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ABSTRACT

Mathematical models that incorporate a dynamic risk of
infection figure prominently in the study of infectious
diseases epidemiology as a tool to inform public health
policy. In recent years, their use has expanded to address
methodological questions, inform and validate study
design and evaluate interventions. This glossary briefly
highlights the applications of transmission dynamics
modelling, explains different modelling methodologies
and defines commonly encountered terms to provide an
introductory and conceptual understanding of the
vocabulary and frameworks used in the literature.

Over the past century, the science of mathematical
epidemiology has grown rapidly, providing theoret-
ical advances and important insights into popula-
tion-level characteristics of infection due to
individual-level behaviour and biology.! Unlike
chronic disease epidemiology, the study of infectious
diseases require specific tools—namely transmission
dynamics models—that capture the dynamic nature
and spread of disease from infectious to susceptible
individuals (a case is also a risk factor) and incor-
porate positive and negative feedback characteristics
of infectious processes.” ° Although the term
‘mathematical model’ describes any ‘model’ based
on a system of equations that summarise observed
data with a goal to predict an outcome of interest,
here we use it to refer to transmission dynamics
models that capture the communicability of infec-
tious diseases. In contrast to mathematical models
of tumour growth or disease progression, or statis-
tical models used for estimation and prediction, the
models discussed in this review assume that the
incidence of infection depends on the prevalence of
infection over time—a feedback system that repre-
sents the non-linear dynamics of infectious diseases
at the population level.

APPLICATION OF TRANSMISSION DYNAMICS
MODELS
Mathematical models provide an insight into the
spread of infections, patterns of disease and their
spatiotemporal or host/pathogen-related (eg, age)
determinants. They enable us to estimate impor-
tant parameters, highlight key gaps in data,
formulate new hypotheses and predict population-
level effectiveness (or potential adverse conse-
quences) of interventions." *°

Early work based on simple mathematical
models succinctly summarised the spread of
infections in populations, providing theoretical
frameworks and key epidemiological concepts such
as the basic reproductive rate and eradication frac-
tion or herd immunity threshold.! ®7'¢ More
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recently, increasingly complex models have
captured the influence of heterogeneity (in contact
patterns, infectivity, or susceptibility to infection)
on the spread and persistence of infection, with
important implications for control and outbreak
preparedeness.” '/~

Models help evaluate interventions, as disease
trends following an intervention may be erroneously
attributed to the intervention if the natural
dynamics of an epidemic are not accounted for (figure
1).% They also assess potential short and long-term
risks of the negative effects of an intervention, such
as increasing age at first infection following vacci-
nation®” and the phenomenon of ‘risk compensation’
behaviour.?' = In conjunction with economic anal-
yses, models help optimise control strategies in the
context of limited healthcare budgets.*!

Models contribute valuable insights at different
stages of new preventive product development.
They can be used to compare and determine the
most beneficial vaccine candidates in the develop-
ment pipeline,” 2" guide licensing,?® and validate
and improve study design and analysis for complex
research questions.”’

Herein, we introduce commonly used terms the
reader may encounter in infectious diseases epide-
miology papers that utilise mathematical models,
focusing primarily on compartmental models of
microparasitic diseases.’ 2 3173

BASIC DEFINITIONS

Host

The living entity of interest in the study (eg,
human, animal, or even a vector) so long as the
pathogen can infect this host and be transmitted
onwards. Any type of host (definitive host (in
which pathogen multiplication occurs) or inter-
mediate host (pathogen progresses from one life
stage to another)) can serve as the ‘host’ of interest.
For example, we may be interested in the propor-
tion of mosquitoes that are infected at any given
time when dealing with a question of malaria in
a human population—in this case, both mosquito
and human serve as hosts in the model (although
the former will usually be called a vector). At any
given time, the host resides in one of several stages
of infection/disease specific to the pathogen.

Pathogen

An organism (eg, prion, bacteria, virus, helminth)
capable of infecting (or colonising) the host such
that the organism (or its progeny) may be trans-
mitted between infected and susceptible hosts. The
mode of transmission may be direct (eg, from
human to human or animal to animal) or indirect
(with an intermediate host such as a vector, or
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Figure 1 HIV prevalence among female sex workers (FSW) over time

in the absence of intervention. In these model simulations the decline in
HIV prevalence after 2000 is due to AIDS differential mortality (removal
of high-risk individuals from the susceptible population). FSW with many
commercial sex partners become rapidly infected with HIV, have

a higher mortality rate than non-FSW, but mortality occurs faster than
the entry rate of new FSW into the population. Therefore, over time the
overall level of risk (ie, mean number of unprotected sex) in the
population is reduced, which reduces the potential for HIV spread as well
as other co-factor sexually transmitted infections. The magnitude of the
HIV epidemic and the speed of the decline is larger if FSW remain in sex
work for life compared with the cessation of sex work after an average
of 1 or 5 years (all with population-level replacement with new entrants
into sex work). Therefore, interpretation of prevalence trends following
an intervention can be difficult, and mathematical models offer an
opportunity to help evaluate the impact of intervention in the face of the
infection’s natural dynamics.*

inanimate object in which the agent may survive (even replicate)
for sufficient periods of time, such as hospital surfaces).

Microparasitic diseases

Classically, infection caused by bacteria, viruses and occasionally
parasites (commonly malaria) in which, for the purposes of the
model, transmission is assumed to manifest as an all or nothing
process and the outcome of interest is the presence of absence of
infection in the host.!

Macroparasitic diseases

Classically, infection caused by helminths in which transmission
(and progression to other biological stages and/or morbidity) is
a process dependent on intensity (parasite level) of infection in
the infected host and the outcome of interest is the distribution
of worm burden in the host."

Model

A simplified representation of a complex real-world event or
structure. The goal is to explain or predict the observed
phenomena, and in doing so glean the fundamental processes
(the essential features) that underpin the system. The use of
mathematical theory enables clarity in understanding and
communicating these generalisable processes. Different types of
models are used to capture the essential behavioural and
demographic characteristics of a population and the biological
features (natural history) of the infection.

Transmission dynamic model

A model that describes the force of infection as a function of the
prevalence of infection and therefore time. The term ‘dynamic’
describes models in which populations fluctuate as a result of birth,
death and migration,' but also the manner in which incidence
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(force of infection) changes with time, due to positive or negative
feedbacks resulting from changes in case counts (ie, prevalence of
infection), immunity, or differential mortality of high-risk indi-
viduals. This contrasts with the static risk of infection incorpo-
rated into some economic models of infectious disease control.?*

Static model

A model that assumes the incidence of infection is independent
of the prevalence of infection and, therefore, time. It often refers
to Markov (decision tree) models used in medical decision-
making and health economics.?* Use of the term ‘static’ in this
case is differentiated from the dynamic equilibrium achieved
within transmission models of endemic diseases.

TYPES OF MODELS

Compartmental model

A model that categorises hosts into key stages (ie, compartments
or states) of infection (eg, susceptible, infected, infectious,
recovered) experienced at some point in time during the life of
an individual (figure 2, Eqn. 1.1-1.5).

S-E-I-R model

Model-specific terminology that divides the natural history of

infection into compartments.

» Susceptible (S): The state at which the host is not infected
but could become infected. Depending on the disease, entry
into the susceptible state can occur at birth, onset of sexual
maturity (eg, with sexually transmitted diseases), or loss of
protective immunity.

> Exposed (latent infection) (E): The state that follows
infection. The host is harbouring the pathogen (ie, infected)
but cannot transmit it yet (ie, is non-contagious), due to low
pathogen burden during this early period of multiplication, or
due to local immune mechanisms (eg, latent stage tubercu-
losis). Clinical manifestations may or may not be present.

» Infectious (I): The state at which the host is harbouring the
pathogen and can transmit it to another host (directly or via
a vector). This contagious period can reflect colonisation or
disease (clinical manifestation of infection).

» Recovered/removed (R): Describes an immune state wherein
the host is no longer susceptible to infection for a fixed (and
possibly temporary) period of time, or deceased. While the
implications of death versus recovery with long-term
immunity are very different in clinical practice, these
outcomes have an identical impact on disease dynamics.
Different combinations of these states can be harnessed to

represent the biology of infection in models (eg, S-I: for lifelong

infection without recovery (eg, herpes simplex virus); S-I-S: for
transient infections such as gonorrhoea that do not confer natural
immunity; S-I-R: for childhood infections that confer natural
immunity) and will influence the behaviour of the system, ie, the

time trends in the prevalence and incidence of infection (figure 3).

In compartmental models, movement between compartments

occurs at an average rate (r). The change in the number of hosts

(state variable) per compartment over time is translated using

differential (deterministic models) or stochastic (stochastic

models) equations solved with analytical or numerical methods.

Incubation
The time from infection until the onset of symptoms, rather
than infectiousness.

Deterministic model
In compartmental models defined by differential equations every
host follows the same average clinical life course. The overall
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Figure 2 (A) Flowchart of a compartmental model illustrating the main
stages of infection for an S-E-I-R-S system, following pathogen
abundance over time. The transmission process begins when the
susceptible host (S) is exposed to the pathogen. Following

inoculation, the host is considered infected but does not transmit the
pathogen (exposed/latent phase (E)). Exposed individuals become
infectious to others if they shed a sufficient quantity of pathogen (I).
Over time the pathogen number declines if adequately controlled by
the host immune system, successful treatment or natural death.
Depending on the agent, the host can therefore recover and become
immune (R) for life, or develop immunity for a limited time and
become susceptible again (S), or eventually leave the population (death).
The host develops symptomatic disease some time after infection
depending on the duration of the incubation period (time period
between infection and disease). In the flow chart, each compartment
represents the number of individuals in the given infection state at time
t (state variable). The arrows, quantified by state-specific parameter in
Eqn 1 (B), represent the flow of individuals from one state to another.
A higher degree of complexity can be included by adding additional
compartments (eg, typically three compartments are used to reflect
the three main infectivity stages of HIV infectivity/infection: acute/
primary, low/asymptomatic, medium/symptomatic). Figure adapted
from Aron.5® (B) Differential equations translating a S-E-I-R-S determin-
istic model into mathematical terms. Each equation represents the
change in the state variables at time t, which depends on the number of
individuals in each compartment and the value of the parameters
quantifying the flow between compartments. The flow of individuals
between stages of infection occurs at an average state-specific per
capita rate: re=rate of becoming infectious, r,=rate of developing
protective immunity, r_=rate of loss of immunity, rate of deaths=rg.
The force of infection, A(t), is intrinsically dependant on the number/
prevalence of infectious individuals in the population, f (the per contact
transmission probability) and ¢’ (contact rate). The parameter A
represents the renewal of new susceptible hosts with A=0 for closed
population and A>0 for open population. For a constant population,
A=rgN(t) (that is, births equal deaths per unit time). Depending on
the model complexity, the rate of flow between states (parameter)
can be a fixed value, a function of other state variables, or change
with time.
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course of infection is always the same for all simulations under
the predefined model parameters and initial conditions. There-
fore, deterministic models reflect the ‘average’ behaviour of the
system. As the state variables are continuous it is possible to
have fractions of individuals, and disease is only eradicated
asymptotically—making this type of model a poor choice if
stochastic effects are of interest.

Stochastic model

Probabilistic model representing stochastic (random) processes.
Each transition (movement from one state to another such as
infection, recovery, etc) denotes an event that can occur to each
individual in a time interval according to a probability that is
proportional to the corresponding rate in the deterministic
framework. These models can be solved analytically or by
simulation. In the later case, each simulation using the same
predefined set of constraints results in a different realisation due
to chance or stochastic fluctuations. For that reason, models are
typically run for a large number of simulations under a given set
of constraints in order to estimate the average outcome and the
variation around this average. This average outcome generated
by the numerous simulations usually provides comparable
predictions to deterministic models, especially when the popu-
lation under study or the force of infection is large.

Stochastic models are used for problems in which random
fluctuations are likely to be important: localised outbreaks, small
population sizes, rare disease (low force of infection or inci-
dence), and near the start (establishment) or possible end
(persistence) of a larger epidemic.®® Incorporating random fluc-
tuations (noise) enables us to estimate the probability of local
extinction (fade-out) and a critical community size at which
fade-outs become rare.

State variable

The number of individuals in each compartment at any given
time—the value of which varies intrinsically within the system
over time (in the absence of any intervention).

Seed or initial conditions

The initial values of the state variable at the start of the simu-
lation and in particular the initial number of infectious indi-
viduals (seed) to start a simulated epidemic.

Homogeneous/heterogeneous population

In ahomogeneous population, individuals in each disease state are
assumed to have the same characteristics. Demographic, biolog-
ical, or behavioural heterogeneity is introduced by dividing the
population into additional subcompartments representing age
groups (age-structured model), specific social groups, or behaviour
(eg, sexual activity classes). In compartmental models, contact
between hosts (or host and vector) is assumed to be instantaneous
(le, negligible duration) although alternative assumptions
regarding the length of partnerships (and thereby, concurrency)
may be incorporated in individual-based and pair models.

Individual-based (agent-based, microsimulation) model
Individual-based models facilitate the inclusion of different
sources of heterogeneity (eg, biological, behavioural) and the
representation of intricate contact patterns (eg, duration
of relationships, concurrency, within-household contacts,
mobility) because each individual host is represented uniquely
and can be assigned a specific characteristic. Individual-based
models are necessarily stochastic and are solved using simulation
techniques.®~%
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Figure 3 Influence of different model structure on the fraction of susceptible (black), infectious (red), and recovered hosts (green) over time (days)

and on Ry for (A) open S-I (susceptible-infectious), (B) closed S-I-S (susceptible-infectious-susceptible), (C) closed S-I-R (susceptible-infectious-
recovered) and (D) closed S-I-R-S (susceptible-infectious-recovered-susceptible) models in a closed homogeneous population. In (A), individuals enter
the system as a susceptible host, who upon acquiring infection, remain infected (and infectious) for life. (B) In this model infected individuals recover
from infection and become susceptible again. (C) In this model infected and infectious individuals develop lifelong immunity once recovered from
infection. (D) In this S-I-R-S model recovered individuals lose their immunity after 1/r, days. Model parameters common to (A—D): Bc’=0.3, ,=0.1. (A)

ra=1/70; (B,C.D) rg_o. (A.C) r,.=0. (B) r,=0.1. (D) r,=0.006.

Network model

Models in which the full contact structure of individuals over
a given period of time is explicitly represented and studied
(figure 4A). Resulting patterns of disease spread using network
theory may be assessed analytically, using concepts from
physics, fluid dynamics and population biology.>’~*' Despite
considerable advancement in the field, network model
complexity remains limited by our empirical understanding of
contact networks.*?

Within-host model
Models that represent a system of cell—pathogen interaction
rather than host—pathogen interaction (between-host models).

Pair model

Compartmental models that explicitly define the partnership
formation and dissolution process by representing a pair of hosts
instead of single hosts. The length of partnerships (rather than
instantaneous formation and dissolution) is thus taken into
account. The population is subdivided by a single and couples of
hosts stratified by disease stages of each host in the pair (eg,
infected but single, pair between susceptible and an infected
host) (figure 4B). %3 44

Metapopulation (patch) model

Models that incorporate the within and between interplay of
subpopulations (disaggregated in space* or social networks).*®
For example, cities (with individuals residing within their
confines) may be linked to other cities by a small number of
individuals who travel between the two. By separating yet
linking these two different groups of hosts, we may obtain
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better realisations of the transmission dynamics of infection
over space and time (figure 4C).

Parameters

Variables that determine the rates of movement (or probability
of an event) between states in the model. Parameter values are
independent of the state variables but can be subgroup and time
specific. Model parameters are estimated from empirical data,
literature review, expert opinion, or as a result of model fitting.

Forcing (extrinsic forcing)

The modification of parameter values that reflect behavioural or
environmental change over time. For example, oscillatory
forcing functions allow models to reproduce periodic surges in
incidence that mimic the ‘seasonality’ of influenza.*’/

KEY CONCEPTS

Force of infection

A(t), given as the per capita incidence rate of infection per
susceptible host and the function is central to transmission
dynamics models. It summarises the transmission process
between infected and susceptible hosts, and depends on the
prevalence of infection in the population, I(t)/N(t), the contact
rate (c'), and the transmission probability per contact (B). For
a compartmental model under an assumption of homogenous
mixing, A(t) is given by:

M) = peid

N(Y) Eqn 1

where I(t) and N(t) are the number of infectious and total
population of hosts at time t, respectively. Transmission

J Epidemiol Community Health 2011,65:87—94. doi:10.1136/jech.2009.097113
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(A) Schematic representation of the contact structure of an individual-based network model of a small heterosexual population of 16

individuals. The contacts or partnerships are represents by the lines/links between individuals. In network models, the links between individuals are
tracked over time. In this example, the network has three components of size one, two and 13 individuals. The network has a total of 13 links and an
average of 1.625 partners per individual. (B) Schematic representation of a pair model: individuals transition between a single state and a pair state
(dashed arrows) in addition to moving through susceptible infectious compartments (given by subscripts S and |, respectively). Transmission results in
a discordant pair now containing two infectious persons (black arrow). The formation and dissolution of partnerships are given by the inverse of the
duration of time spent in the single and pair states. (C) In the metapopulation model, subgroups are enclosed within the oval regions, and are linked by
the connection of one or more individuals between subgroups. Subgroups may be defined by geographical, temporal, or social network

demarcations.
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between infecteds and susceptibles will also depend on how the
contact structure between the two is expected to change with
population size (whether transmission is density dependent or
frequency dependent).

>

Density-dependent (pseudo mass action) transmission:
Contacts are assumed to be proportional to the population
size/density (C’= CN=N and Eqn 1 reduces to A(t)= BI(t)).
The number of new infecteds, NI(t), with NI(t) = A(t)*S(t),
thus depends on the number of infectious and susceptible,
S(t), hosts in the population, assuming random mixing. ° 1°
Frequency-dependent (mass action) transmission: The
number of contacts is assumed to be independent of
population size (C’ = A(t) as Eqn 1).!

Incorporating heterogeneities in contacts that arise from age,

space, or behavioural differences between individuals can produce
more realistic incidence trends (requires modifying Eqn 1).%!

Transmission probability (5)
The probability that an infectious host will infect a susceptible
one following an adequate contact.

Contacts

The type of contacts required for transmission of the infection
depends on the mode of transmission (eg, airborne, sexual). For
example, physical contact or close conversation for directly
transmitted infection (eg, measles, influenza) or physical contact
for sexually transmitted infections, insect bites for vector-borne
infection.

Contact (mixing) pattern
The contact pattern depends on the frequency (c) and vari-
ability of contact per unit time in the host population.

>

>

Homogeneous—random: Each host has the same average rate
of contact with another host. Contacts between hosts are
made uniformly with equal probability.
Heterogeneous—non-random: Some hosts have, on average,
a higher rate of contact than others due to social, spatial, or
behavioural differences, introducing heterogeneity that can be
captured in models. Contacts between hosts are non-random,
ie, made with unequal probability.

In the presence of heterogeneity, contact between hosts can

occur across a spectrum—from assortative to proportional to
disassortative—of mixing patterns describing who mixes (makes
contact) with whom.*

J Epidemiol Community Health 2011;65:87—94. doi:10.1136/jech.2009.097113

> Assortative mixing: Hosts of similar risk/subgroups are more
likely to mix with each other.*®

» Proportional mixing: Hosts of any risk group have a proba-
bility of mixing with a member of another risk/subgroup
based on the size and the contact rates of the latter.* If all
groups are of equal size, hosts with higher contact rates are
more likely to be chosen/contacted by any given host.

> Disassortative mixing: Hosts are more likely to interact with
members of a risk group other than their own.*®
The mixing pattern influences the dynamics of infection at

the different stages of an epidemic.? *

Epidemic stages
Establishment, spread, equilibrium prevalence and persistence.

Basic reproductive (reproduction) number/ratio (Ry)

The average number of hosts that become infected as a result of
the entry of one infectious host into a completely susceptible
population in the absence of intervention. By definition, Ry is an
idealised quantity that is virtually impossible to observe directly
but can be estimated indirectly.®" For an infectious disease to
establish and propagate in the population, Ry must be greater
than 1. The main components of this ratio include the trans-
mission probability, duration of infectiousness (D, where D=1/
rate of recovery from infection), and contact pattern between
hosts." The expression for Ry depends on the model structure;
for a simple S-E-I-R model (in an open population with
homogenous mixing, Eqn 1.1), Ry is given by:

Ry = Bc’D ... Eqn2

Infectious disease control programmes are effective because
they can reduce any of these components: § can be reduced
through personal protective items (eg, N95 masks, condoms); ¢’
can be reduced by quarantine, isolation, or behaviour change;
and D can be reduced through treatment (as with tuberculosis).
In malaria transmission models, the notation Z; is sometimes
used to define the average number of infected mosquitoes whose
infections are the result of one infected mosquito in a finite
human population.”

Effective reproductive number/ratio (R,)

The average number of new infections caused by an infection at
time t in a population in which not all hosts are susceptible. For
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endemic models with homogenous mixing, R.=RS(t), where S
(t) is the fraction of hosts who are susceptible at time t. R, varies
with time and equals 1 when the system has reached an endemic
equilibrium (steady state).’ '

Eradication fraction (herd immunity threshold) (S;,)

Under a compartmental framework with homogenous mixing,
the minimum fraction of susceptibles that must be immune (or
vaccinated at birth (assuming 100% vaccine efficacy)) to reduce
R below 1 and eradicate infection; that is, by the removal of
susceptible hosts”' ™ (R=R,S(t),<1 and Sp=1—1/R,).*! 32 !
When heterogeneity in mixing is introduced, this relationship
holds so long as vaccination is applied at random.®! An infectious
process with a lower R requires a lower eradication fraction. Host
‘immunity’ may be acquired following infection or vaccination.

Elimination/eradication

Theoretically, elimination or eradication can be achieved by
reducing Ry below 1 or maintaining R.<1 by keeping S(t)<Sy.
Although the term ‘eradication’ is often used, many models
focus on geographically (or socially) distinct populations, and
the term ‘elimination’, in an applied context, is more appro-
priate. Outbreaks can sometime occur even when Ry is less than
1 as a result of random fluctuations in the number of new
infections generated at any given time point.”

Herd immunity

Strictly speaking, a population has herd immunity if the eradi-
cation fraction has been achieved. However, it is often used to
refer to the indirect population-level effects that vaccinated
hosts confer to susceptible hosts as a result of reduced force of
infection as the reduced prevalence (among vaccinated persons
or those having received the intervention) simultaneously
reduces the exposure of still susceptible hosts to infection.”'>*

Stochastic eradication/elimination or epidemic fade-out

A disease may become locally extinct by chance alone (even if
Ro>1) in small population or when the disease is rare;
a phenomenon simulated within stochastic models but not in
deterministic models. In the latter, the basic reproductive
number (Rp) is the only criterion for the persistence of an
infection in a community.

Doubling time
At (or very near) the start of a growing outbreak, the time for
the number of infecteds to increase twofold.

SIMULATION

A technique that uses mathematics to mimic the operations of
the real-world process described by our model. The term is
commonly used within stochastic frameworks when models are
solved using a predefined computational algorithm (such as
Monte Carlo simulations) under the same set of parameter values
(recall that each simulation can produce a varied outcomes due to
random chance). In a deterministic framework, simulations
usually refer to model runs under different parameter values
(because each simulation provides the same output for a unique
set of parameters).

Monte Carlo simulation

A type of computational algorithm used with stochastic
(compartmental, network, individual-based) models in which
the probability of any given transition is randomly sampled
from a predefined probability distribution.
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Model fitting

Refers to calibrating model parameters (parameterisation) to the
observed epidemiological data (eg, prevalence of infection). It
can be performed using different statistical techniques such as
least squares, maximum likelihood methods, or using a Bayesian
framework. In the latter, parameter sets are sampled from
a predefined distribution of plausible values (prior distribution).
Only model realisations that are likely (assessed with a fitting
criteria) to be compared to the observed outcome are retained to
make predictions that reflect uncertainty in parameter
assumptions (posterior distribution of model outcomes).

Analytical solution

The procedure of solving equations using mathematical theory
to obtain a closed form solution for the relationship between
model parameters and an outcome of interest (eg, equilibrium
prevalence of infection, Ry). Generally, these methods are used
with relatively simple deterministic or stochastic models and
recently even with network models.® %

Numerical solution

In the context of compartmental models, the term refers to the
solution of a set of differential equations (deterministic or
stochastic) obtained by numerical integration using approxi-
mation techniques (eg, Euler, Runge Kutta) and mostly with
computer programming.®! In the context of stochastic models
(compartmental, network or individual based) solved by Monte
Carlo simulations, it refers to the realisations of the probability
events at each time point.

Sensitivity analysis

An assessment of the effect of the input parameters on model
predictions over the range of parameter values of interest. It
helps evaluate the robustness of the results to changes in
conditions or external validity of model outcomes outside the
simulation setting (ie, different population). Can be conducted
as one-way (adjustment of one parameter while all others are
held constant) or by multivariate analysis. Note that the range
explored can influence model results and conclusions. The
results of sensitivity analysis tend to be more general than those
of uncertainty analysis because of the wider range explored.

Uncertainty analysis

Although the terms sensitivity and uncertainty analysis are
often used interchangeably they are slightly different. Uncer-
tainty analysis is a type of sensitivity analysis in which the
input parameter range is narrower than in sensitivity analysis,
restricted to parameter values that are realistic for the specific
population studied, and preferably obtained after model fitting.
It helps elucidate which parameters influence model projections
and lead to uncertainty in the outcome of interest in the specific
population studied. The results of uncertainty analysis are more
context specific than those of sensitivity analysis. Uncertainty
and sensitivity analysis can give different results because they
cover different parameter ranges.

Latin hypercube sampling

An efficient sampling method for multidimensional parameter
distribution often used in multivariate uncertainty analysis to
minimise the number of parameter sets explored. When ‘P’
parameters are explored, each parameter space is divided into ‘n’
equal probability intervals. For each parameter, one interval is
chosen randomly without replacement. This process is repeated
N times to produce N multivariate parameter sets.” 56
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What is already known on this subject

Research aimed at investigating the population-level epidemi-
ology of infectious diseases has increased in recent decades,
expanded by the use of mathematical models.

What this study adds

This review highlights terminology common to mathematical
models in an effort to facilitate dialogue between modellers,
clinicians and public health specialists.

MODEL DEVELOPMENT

Complexity and limits

The degree of complexity required in a model is often a matter of
contention and, ultimately, a subjective decision. By definition,
a model is a simplification of reality and all models are based on
assumptions, even statistical models. The degree of complexity
required is intrinsically linked to the research question and
limited by the level of computational difficulties introduced. The
ideal model should be simple (parsimonious) yet strive to
represent reality as adequately as possible by capturing the key
demographic, biological and behavioural features necessary to
address the question of interest.”” It has been argued that in
many instances compartmental models are simpler to develop
and solve, allowing for analytical tractability.® As previously
discussed, some classes of network models that represent more
complex contact structures can also be solved analytically.®!
However, when compartmental or network models become too
complex, it is easier to use individual-based models.

Generally, simpler models are used to gain a general and
intuitive understanding of key principles when little is known
about an infection®® or when studying a novel research question.
More complex models are preferred when detailed information is
available, accurate projections are required, or new hypotheses
necessitate testing (eg, importance of heterogeneity of a given
risk factor). However, more complex models (eg, agent-based
models) are not necessarily better than simpler ones because
greater uncertainty is introduced as the number of assumptions
and parameters increases and data to validate models become
scarce, making model findings difficult to interpret.

In recent years, due to increased computer power and data
availability, the application of statistical methods to ‘test and
validate’ model assumptions and model simplification is an
advancing area of study.”” " Understanding host behaviour and
host—pathogen interactions and collecting empiric data on
outcomes strengthen the utility and validation of models.*?

Model interpretation

Model findings must be interpreted within the limits of their
assumptions, parameter values and initial conditions. Good
modelling articles ensure that model assumptions and defini-
tions of each component are described in sufficient detail,
enabling transparency and reproducibility.
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lllustrating health inequalities
in Glasgow

The stark health inequalities in Glasgow are demonstrated by
the drop in life expectancy of 2.0 years for men and 1.2 years for
women for each station on the railway line between Jordanhill
and Bridgeton (more than double the equivalent inequality along
London’s Jubilee underground line from Westminster to Canning
Town) (Figure 1).

Figure 1 Life expectancy differences
between areas six railway stations
apart in Glasgow.
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