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ABSTRACT

Profiling of mRNA abundances with high-throughput platforms such as microarrays and RNA-seq has become an important tool
in both basic and biomedical research. However, these platforms remain prone to systematic errors and have challenges in
clinical and industrial applications. As a result, it is standard practice to validate a subset of key results using alternate
technologies. Similarly, clinical and industrial applications typically involve transitions from a high-throughput discovery
platform to medium-throughput validation ones. These medium-throughput validation platforms have high technical re-
producibility and reduced sample input needs, and low sensitivity to sample quality (e.g., for processing FFPE specimens).
Unfortunately, while medium-throughput platforms have proliferated, there are no comprehensive comparisons of them. Here
we fill that gap by comparing two key medium-throughput platforms—NanoString’s nCounter Analysis System and ABI’s
OpenArray System—to gold-standard quantitative real-time RT-PCR. We quantified 38 genes and positive and negative controls
in 165 samples. Signal:noise ratios, correlations, dynamic range, and detection accuracy were compared across platforms. All
three measurement technologies showed good concordance, but with divergent price/time/sensitivity trade-offs. This study
provides the first detailed comparison of medium-throughput RNA quantification platforms and provides a template and
a standard data set for the evaluation of additional technologies.

Keywords: mRNA abundance; real-time RT-PCR; NanoString; OpenArray

INTRODUCTION et al. 2009). Indeed, it has been postulated that biomarkers
exist for the early detection and early treatment of numer-
ous disorders (Goodkind and Edwards 2005). Similarly,
many pharmacological or toxicological agents alter gene
expression (Kopec et al. 2012; Yao et al. 2012), and mRNA
abundance profiles can be used to create biomarkers of
exposure to foreign chemicals as well as to facilitate un-
derstanding of mechanisms of basic physiological responses
(Van Hummelen and Sasaki 2010; Uehara et al. 2011). These
studies are often done in a huge range of animal models
(Hook et al. 2006).

While mRNA abundance profiles clearly hold critical
information, their use in commercial and medical applica-
tions has been delayed by technological factors. In partic-
ular, analysis of archival formalin-fixed paraffin-embedded
(FFPE) tissues has been critical for many medical applica-

The emergence of functional genomics as a discipline has
largely been driven by technological improvements in our
ability to evaluate cellular mRNA abundances. Measure-
ment of the level of each transcript, for instance, by using
microarray-based approaches, provides a “snapshot” of
the status of cells and tissues and can be used to assess
responses to genetic, pharmacological, and environmental
perturbations. For example, classic studies have demon-
strated that mRNA abundance profiles can be used to
identify different disease subtypes (Golub et al. 1999) or
even to identify patients likely to have specific outcomes
or responses to therapy (van de Vijver et al. 2002; Boutros

“Corresponding author

E-mail Paul.Boutros@oicr.on.ca
Article published online ahead of print. Article and publication date are
at http://www.rnajournal.org/cgi/doi/10.1261/rna.034710.112.

tions. Furthermore, cost, signal noise, and data-analysis
limitations have limited the adoption of transcriptome-
wide profiling methods. For example, the limited length of
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microarray probes (25-100 bp) can result in nonspecific
binding of transcripts (Zhang et al. 2002), particularly in
disease states. Instead, many groups have sought to develop
multigene biomarkers (sometimes called “signatures”) com-
posed of tens to hundreds of genes that could be assayed
using technologies with superior performance on FFPE
material, reduced cost, and increased performance (Chen
et al. 2012; Kratz et al. 2012; Lenehan et al. 2012).

Initially, low-throughput technologies, such as Northern
blots and quantitative real-time PCR (qPCR), were used to
assess biomarkers composed of a small number of clearly
defined genes (Lau et al. 2007; Sparano and Paik 2008).
These technologies are currently used for situations (1)
requiring fast results, (2) with minimal sample available, or
(3) requiring clinical certification. For example, in a clinical
setting in which a patient requires a lung transplant and the
physician requires the mRNA abundance results from the
patient’s biopsy within 1 h, low-throughput techniques
are used (Kaneda et al. 2006). The high specificity and
sensitivity of gPCR make it the typical method for validation
of results initially obtained from high-throughput methods
such as microarrays. Unfortunately, qPCR can be labor
intensive and time consuming and requires a large quantity
of cDNA.

As a response to these limitations, several companies
have recently developed medium-throughput technologies
for measuring mRNA abundances. These are intended to
allow analysis of tens to hundreds of genes on a large
number of samples more rapidly and efficiently than qPCR,
but with noise and cost characteristics more favorable than
high-throughput methods. Specifically, medium-through-
put methods are beneficial (1) when performing validation
on candidate genes, (2) in the presence of limited analyte,
and (3) for use in clinical settings where speed and data
quality are critical.

Two of the most prominent medium-throughput tech-
nologies are the hybridization-based nCounter Gene Ex-
pression Assay (NanoString Technologies) and the PCR-
based TagMan OpenArray Real-Time PCR Assay (Applied
Biosystems). NanoString nCounter custom assays are avail-
able in formats that accommodate 48, 96, 192, or 384
samples, which allows either large- or small-scale projects
as necessary. NanoString uses a combination of capture
probes and unique, color-coded reporter probes that allow
for highly multiplexed reactions using 100 ng of RNA,
making it applicable in situations in which sample is scarce.
Both the capture and reporter probes contain target-
specific sequences (35-50 bp) but differ in that the capture
probe is attached to a biotin tag for target capture while the
reporter probe terminates in a target-specific color-coded
tag for detection. The length of these probes is similar to
that used for microarray hybridization; however, the dual-
probe system results in more accurate signal capture as
ensured by three factors: first, both probes are present in
solution, allowing for more direct interaction with targets;
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second, the reaction is carried through to completion to
ensure all targets are counted; and finally, the digital
readout provides less noisy results than analog systems
(Geiss et al. 2008). Once probes are synthesized, the
detection process can be completed in 2-3 d (NanoString
Technologies). In contrast, TagMan OpenArray Real-
Time PCR assays are available in 18, 56, 112, 168, and
224 formats, allowing 48 (in triplicate), 48, 24, 16, or 12
(in singular) samples per plate. The design of OpenArray
assay plates requires only nanoliters of reagent, thereby
reducing sample requirement to only 1 ng per reaction.
The workflow of this platform permits progression from
sample introduction to data output in ~3 h (Life Technol-
ogies). Both technologies provide clear advantages over
standard qPCR (Table 1).

To date, despite some limited work (Palamanda et al.
2009), no independent group has systematically and com-
prehensively compared these platforms to one another and
to gold-standard qPCR assays. As a result, it remains unclear
which of these platforms is best suited to analysis of clinical
samples for personalized medicine or for validation of
microarray targets. Here, we fill that gap by evaluating 38
genes in 165 samples in all three platforms. We compare
detection of negative and positive controls, intraplatform
repeatability, interplatform correlation, dynamic range, and
the effects of data preprocessing.

RESULTS

mRNA profiling

As a biological model for assessing performance of
medium-throughput methods, we chose hepatic gene
expression in rats treated with the potent environmental
toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).
TCDD, at very low doses, causes a wide spectrum of
toxic effects in rodents (for review, see Pohjanvirta and
Tuomisto 1994). These toxicities are fundamentally due
to dysregulation of gene expression mediated by the aryl
hydrocarbon receptor (for review, see Okey 2007). Nu-
merous high-throughput studies have been conducted to
identify the key genes whose altered expression underlies
dioxin toxicity (Pohjanvirta et al. 2006; Boutros et al.
2008, 2011; Franc et al. 2008; Ovando et al. 2010). TCDD
causes very large changes in expression of several genes—
up to 1000-fold or more along with modest changes in
expression of numerous other genes (Tijet et al. 2006;
Franc et al. 2008; Moffat et al. 2010). Because mRNA
levels differ dramatically between control animals and
animals treated with TCDD, this provided us a highly
suitable model in which to compare methods for quan-
tification of multiple mRNAs over a very wide range of
abundances.

The purpose of this study was to evaluate the effectiveness
and applicability of two mRNA abundance detection plat-
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TABLE 1. Platform comparison

Platform gPCR NanoString OpenArray

Process RNA was reverse-transcribed RNA was diluted. RNA was reverse-transcribed
and diluted to produce cDNA. and diluted to produce cDNA.

cDNA was combined with TagMan RNA was loaded into two cDNA was loaded into two

mastermix, primer/probe mix and 96-well plates and forwarded 96-well plates and forwarded
loaded into 42 384-well plates to the Toronto Medical Discovery to Life Technologies for
for qPCR. Tower for NanoString. OpenArray RT-PCR.

Time/effort ++ =B —

Sample required 5 ng cDNA/reaction 50 ng/multiplexed reaction 1 ng/well

Input [ng/u.L] 5 (cDNA)? 50 (RNA) 2.5 (cDNA)?

Sample used 500 ng cDNA 100 ng RNA 100 ng cDNA

Turnaround time ~6 mo ~1 wk ~40d

A summary comparison of the three platforms compared in this study with some advantages and disadvantages of each platform highlighted.
RNA was extracted, quantified, and qualified for all platforms simultaneously.

4Assuming 100% reverse transcription reaction efficiency.

PNote that NanoString and OpenArray experiments are done by a core facility, and the time required for that is not included in this comparison:

This is just “in-house” time/effort being assessed here.

forms, NanoString and OpenArray, relative to “gold-standard”
qPCR. The experimental workflow from animal treatment
through data analysis is outlined in Figure 1A. We used
a total of 165 animals: 80 male L-E rats and 85 male H/W
rats. These animals were treated with either corn oil vehicle
or TCDD (0.001-3000 pg/kg) and the livers collected at
a range of time points (from 1.5 h to 16 d) (Fig. 1B).
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an envi-
ronmental contaminant that produces a wide range of toxic
responses in laboratory animals. It was chosen for this
study for the availability of positive and negative controls
that provide a large dynamic range of transcriptomic re-
sponses (Pohjanvirta et al. 2006; Franc et al. 2008). L-E and
H/W rats were chosen for their differential TCDD sensitivity:
L-E rats are highly sensitive to the acute lethality of TCDD
(LDsg ~ 10 mg/kg) (Pohjanvirta 1990), while H/W rats
are extremely resistant (LDsy > 9600 pg/kg) (Unkila et al.
1994). These strains have been extensively studied and
have well-characterized TCDD-induced differential ex-
pression patterns (Franc et al. 2008; Boutros et al. 2011).
A total of 38 genes were commonly analyzed by qPCR,
NanoString, and OpenArray RT-PCR (Fig. 1C), including
two reference genes, three Aryl Hydrocarbon Receptor-
related genes, and 33 genes previously determined to be
significantly altered by TCDD at a single dose and time
point in both mice and rats (Boutros et al. 2008). The
relative and/or absolute mRNA abundance for the above
genes was measured using each platform and analyzed
to determine the intra- and interplatform reliability and
repeatability.

Data preprocessing and reference genes

The platforms used produce data with different units, either
C, values (qQPCR and OpenArray) or direct mRNA counts

(NanoString). To standardize our comparison between the
platforms, we used normalized expression levels (NELs) of
each gene for all downstream analysis. NELs were calcu-
lated from raw Cq values for both qPCR and OpenArray
methods as described previously (Methods) (see Barsyte-
Lovejoy et al. 2006). The NanoString mRNA counts
required additional preprocessing to normalize to internal
controls before NEL calculation. The NELs were calcu-
lated using reference genes previously shown to be un-
affected by TCDD in rats (Pohjanvirta et al. 2006) and
log,-transformed.

Two reference genes (Gapdh and Pgkl) were available
for the qPCR analysis, while both OpenArray and Nano-
String measured seven reference genes (Eeflal, Gapdh,
Hprtl, Pgkl, Ppia, Rpll3a, and Sdha). We validated the
efficacy of all reference genes used on each platform: A
Pearson’s correlation was performed using the mRNA
levels for the reference genes on each platform (Fig. 2A,B;
Supplemental Fig. 1). These data show a poor correlation
of the reference gene Rpl13a with other reference genes on
the OpenArray platform as well as a low correlation of the
genes Rpl13a and Pgkl with other reference genes mea-
sured on NanoString. Time-course and dose-response
plots (Fig. 2C,D; Supplemental Fig. 2) were created for
the reference genes for each platform. These data confirm
that the reference gene Rpl13a was not well correlated with
the other reference genes in the OpenArray study; thus,
Rpl13a was removed from further analysis. Similarly,
Rpli3a and Pgkl were removed from further analysis of
the NanoString data based on the low correlations with
other reference genes. The stability of the remaining
reference genes across multiple platforms further validates
Eeflal, Gapdh, Hprtl, Ppia, and Sdha as reference genes
for studies of dioxin-treated rat liver (Pohjanvirta et al.
2006).
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FIGURE 1. (A) Outline of the experimental design and workflow for
this study from animal treatment to data analysis. (B) Graphical
representation of the TCDD dose (in micrograms per kilogram,
wg/kg) and the time of collection for Long-Evans (left panel) and
Han/Wistar (right panel) rats. The dose—response study was performed
on tissues collected at 19 h (vertical bar), while the time-course study
was performed using a dose of 100 g/kg (horizontal bar). The number
of animals included in each group is indicated by the gradient. (C)
mRNA levels for 38 genes were measured across all three platforms.

Intraplatform repeatability

We evaluated technical and biological variability in each
platform by comparing signal-to-noise ratios (SNRs). The
SNR was calculated as the ratio of the mean NEL to the
inter-replicate standard deviation. The mean NELs were
shifted to have a minimum value equal to zero to account
for artifacts of reference gene normalization. The SNR for
the common gene set using the standard deviation of the
technical replicates for JPCR and OpenArray was visualized
(Supplemental Fig. 3A). OpenArray displays greater tech-
nical reproducibility than gPCR. The NanoString experi-
ment was performed without technical replicates; therefore,
it was not possible to evaluate technical repeatability.

As expected, there is more biological variability in each
platform (Supplemental Fig. 3B) than technical variability
(Supplemental Fig. 3A). Interesting, the raw data from
qPCR show more consistency between replicate samples
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than do those of OpenArray or NanoString. To determine
if this holds true for the final conclusions, we examined the
coefficient of variation (CV) of the fold changes (Supple-
mental Fig. 3C). Fold changes were calculated using the
corn-oil vehicle-treated animals collected at 19 h post-
administration for biological sample replicates. Unlike the
raw data, fold changes show lower intraplatform repeat-
ability by qPCR than by OpenArray or NanoString, and
this does not appear to be a function of high-expression
mRNAs (Supplemental Fig. 3D). These results suggest that
the three platforms differ in their bias/variance trade-off,
with qPCR having significantly more variance than the
other two platforms.

Dynamic range

The dynamic range of detection was analyzed to determine
the ability of each platform to accurately quantitate mRNA
levels when a particular mRNA is present at varying
levels between sample groups. The fold changes for five
known TCDD up-regulated genes (Table 2) were examined
(Korkalainen et al. 2004; Franc et al. 2008; Deb and Bandiera
2010). These data show that qPCR displays the greatest
range of detection, with a greater than 2°°-fold range.
OpenArray and NanoString display detections in a 2'7- and
2'%-fold range, respectively. These results are consistent
with the bias/variance observations noted in our SNR and
CV analyses above (Supplemental Fig. 3). A large dynamic
range allows detection of both high and low expression
levels; however, the difference in measured fold changes
among platforms brings into question the accuracy of that
detection. The detected values present at either end of the
dynamic range may be true measurements or may result
from technical artifacts. Therefore, we verified these mea-
surements by analyzing the concordance of these data with
previous data collected from microarray experiments as
described in the following section.

Comparison with microarray data

The genes analyzed in this study were a subset of data from
a previous study by Boutros et al. (2008) that were
determined to be relevant to TCDD toxicity in Long-Evans
rats. The genes we evaluated possess a wide range of fold
changes following treatment with 100 pg/kg TCDD for
19 h and were compared with changes calculated from data
collected from each NanoString, OpenArray, and qPCR
(Supplemental Table 1) at the same treatment. These data
show that lower mRNA levels are detected by these three
platforms relative to results generated by the previous array
study. The magnitude of this effect ranged from ~15%
(OpenArray) to ~20% (NanoString) to as much as 50%
(qPCR). The fold changes for each platform were plotted
against those from the previous array study and Spearman’s
correlations calculated (Fig. 3). Both NanoString (p = 0.92,
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10 Specifically, the repressed Cyplbl re-
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duction as a result of TCDD exposure.
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sensitive and TCDD-resistant rats and
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lation of Cyplbl following exposure to
even low doses of TCDD (Boutros et al.
2008, 2011; Franc et al. 2008; Pohjanvirta
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FIGURE 2. The reference genes used for the NanoString and OpenArray RT-PCR analyses
were validated before downstream analysis. (A) The Pearson’s correlations between each of the
reference genes presented as a heatmap as analyzed by NanoString or (B) OpenArray. (C) The
time-course response of the reference gene mRNA levels following TCDD treatment (100 pg/kg)

as determined using NanoString or (D) OpenArray.

p =3.58 X 107"*) and OpenArray (p = 0.94, p = 2.52 X
107') are well correlated with microarray data and show
similar statistically significant fold changes as those selected
through the previous study. Aside from confirming the
different trade-offs between platforms, these data demon-
strate strong interplatform concordance.

Interplatform variability

The fold changes for the mRNAs shared across each
platform were compared. Fold changes from each pair of
platforms were plotted and Pearson’s correlation values
calculated (Fig. 4A—C). Here we show a strong correlation
between the NanoString and OpenArray data (R = 0.95)
but a lower correlation of either of OpenArray (R = 0.48)
or NanoString (R = 0.55) with the qPCR data. Paired
Student’s ¢-tests were performed using the fold changes for
each mRNA species/animal from each platform data set to
analyze the difference in detection (Table 3). These results
confirmed the above conclusion that NanoString and
OpenArray provided similar results, whereas qPCR differed
significantly from both.

The time-course and dose-dependent response plots for
two TCDD-affected genes—one highly up-regulated gene,
Cypl1bl (Fig. 4D), and one down-regulated, Inmt (Fig. 4E)—
were compared across all platforms. The fold changes (in log,

2009). Also, the dose-response for Inmt
by L-E rats, as detected by qPCR varies
from the repression described in previous
literature (Boutros et al. 2008, 2011).
Despite these points, all platforms detect
the expected overall trend in expression
for each of these genes.

100 350
Time (hours)

NanoString normalization method comparison

As the newest of the three platforms, the preprocessing
approaches for NanoString data remain poorly described.

TABLE 2. The dynamic ranges of five responsive genes detected
by each platform

Dynamic range of log, fold changes

Gene qPCR OpenArray NanoString
Ahrr —12.4/7.0 0/11.7 —1.1/5.2
(19.4) (11.7) (6.2)
Aldh3a1 —8.3/23.0 —6.1/10.8 —1.4/11.3
(31.3) (16.9) (12.6)
Cyplal —3.2/14.1 —1.6/10.1 —1.6/10.0
(17.4) (11.7) (11.6)
Cyp1bl —3.5/10.6 —3.7/13.7 —1.2/11.3
(14.1) (17.5) (12.5)
Cyp2s1 —2.0/9.0 —2.2/0.4 —1.2/0.9
(10.9) (2.6) (2.1)

The values displayed represent the minimum and maximum
calculated fold change (in log, space) for each gene across a wide
range of treatments. The value in parentheses indicates the overall
range of detection for each gene. We show the five genes that
exhibited the greatest dynamic range as determined by qPCR since
it is the gold standard-most widely used in measuring mRNA
abundance, and we compare gPCR with the corresponding
measurements by both OpenArray and NanoString.
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FIGURE 3. Fold changes from each platform were plotted against
fold changes calculated using microarray data from a previous study
for the genes evaluated on all platforms (Boutros et al. 2008). Fold
changes measured through (A) qPCR analysis show a lower correla-
tion with the microarray study than either (B) NanoString or (C)
OpenArray as indicated by the low Spearman’s correlation (p).

We thus sought to demonstrate if differing preprocessing
methodologies could alter the observed platform compar-
ison. NanoString Technologies recommends normalizing
mRNA counts using both positive, spiked-in RNA hybrid-
ization controls (to account for hybridization efficiency)
and negative hybridization controls (to account for tech-
nical background noise). It is also suggested to normalize
the counts to endogenous reference genes to account for
the sample content (see Materials and Methods). To
determine a preferred overall normalization method, the
data were renormalized by varying each step of the initial
normalization procedure in the R statistical environment
using the NanoStringNorm R package (v0.9.4) (Waggott
et al. 2012). The reference genes Eeflal, Gapdh, Hprtl,
Ppia, and Sdha were used in the sample content normal-
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ization. Data sets were generated using multiple represen-
tative combinations of normalization methods.

To demonstrate that our results are not an artifact of the
software package used, we have replicated these results
using NanoString’s nSolver software. Again we used Eeflal,
Gapdh, Hprtl, Ppia, and Sdha as reference genes for sample
content normalization. These data are given in Supple-
mental Table 2.

To compare different analysis methods, we calculated the
fold change for each gene and compared these with the
qPCR and OpenArray data sets. The range of the fold
changes for two typical TCDD-inducible genes, Ahrr and
Cyplal, was determined for each combination (Supple-
mental Table 2). Figure 5 compares six representative
NanoStringNorm normalization methods against qPCR
data; similar comparisons with OpenArray data are avail-
able in Supplemental Figure 4.

We demonstrate a profound sensitivity of NanoString
data to preprocessing approaches. For example, removing
sample-content normalization entirely has minimal effect
(Fig. 5A vs. 5B), but application of the very commonly
applied quantile-normalization procedure completely elim-
inates the correlation with qPCR data (Fig. 5A vs. 5C).
Similarly, introduction of background correction proce-
dures (Fig. 5D,E) reduces performance. The default ap-
proach suggested by NanoString (Fig. 5F) works well on
this data set, although these results strongly motivate
further work into optimizing NanoString data preprocess-
ing techniques.

DISCUSSION

mRNA abundance analysis has become a critical tool in
numerous fields of biology, ranging from biomedicine
(Kaneda et al. 2006; Lau et al. 2007; Boutros et al. 2009)
through to agriculture (Wang et al. 2011). While several
high-throughput methods for measuring mRNA abun-
dance, like microarrays and RNA-seq, are available, these
are not generally appropriate for “production” applica-
tions. In clinical settings in particular, the detection and
measurement of biomarkers and prognostic markers typi-
cally require analysis of a small subset of genes from very
limited patient material, and with data quality and cost as
key factors. The recent development of medium-through-
put platforms that can be used for large-scale validation
and production studies is a key step in the translation of
mRNA-based tools into medical and commercial use.

We compared the performance of three medium-
throughput mRNA abundance measurement technologies.
We chose to mirror potential clinical applications by using
a large sample number (n = 165). We selected to use 38
genes because most proposed biomarkers are of similar
size. We selected to focus on genes associated with TCDD
toxicity for several reasons. First, we have significant
experience in this area of research, and our work along
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FIGURE 4. Fold changes for genes common to all platforms were compared with measure interplatform performance. (A) Pearson’s correlations
were calculated for the comparison between qPCR and OpenArray, (B) qPCR and NanoString, and (C) NanoString and OpenArray. The time-
course and dose-response plots for two well-known TCDD-regulated genes, (D) Cyplbl and (E) Inmt, were created and compared across all

platforms.

with that of other groups allows ready interpretation of the
results of this study. Second, TCDD induces a broad range
of changes that include very large magnitude effects and
very small ones. This allowed us to generate an accurate
assessment of dynamic range for each platform. Third, by
focusing on an animal model, we could evaluate both
technical and biological variability in a reproducible way.
In fact, additional tissue, RNA, and cDNA from each of
these animals are available for further evaluations of other
platforms and technologies. The three key findings from
this work are (1) strong general agreement between the
various analysis platforms, (2) small but important differ-
ences between platforms in their optimal usage, and (3)
clear and important effects of data preprocessing and
analysis. We discuss each of these in turn.

The most prominent finding of this evaluation is very
good interplatform consistency. Both the raw and analyzed
data showed good correlations between the three medium-
throughput platforms, as well as in comparison to archival
microarray data (Figs. 3, 4). In particular, NanoString and
OpenArray data were very well correlated (R = 0.95; P <
2.2 X 107'°). Surprisingly, it was actually qPCR data that
exhibited more variability with a moderate correlation (R =
0.55) with the NanoString data. These data are consistent
with the results of the statistical analysis (Table 3), which
show that the results obtained through OpenArray and
NanoString are statistically similar, while the results from
both platforms are significantly less similar to those gained
through qPCR. The time-course and dose-dependent re-
sponse plots were also compared for two canonical TCDD
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TABLE 3. Statistical comparison

analysis provided raw C, values that
required no further manipulation and

NanoString could be used directly for analysis. Out-

qPCR OpenArray
qPCR P=427 X 107%2
M=0.719
OpenArray P=427 X 107%
M= —0.719
NanoString P=3.40 X 107%° P=453 X 107"
M= —0.697 M=0.016

P=340 X 10725 put from the NanoString nCounter

M= 0.697 provided direct counts of the mRNA
P=453 x 10" molecules present in the sample and
M= —-0.016

required additional processing before
the analysis to account for sample var-
iation. Normalized expression levels

Student’s t-tests were performed on the fold changes from each platform data set; here we
show the calculated P-values and difference in means (M) for each comparison. The fold
changes calculated from the OpenArray and NanoString data are not statistically different
from one another. However, both platforms show statistically significant differences from

results of gPCR assays.

regulated genes—Cyp1bl (Fig. 4B) and Inmt (Fig. 4C)—across
all platforms. OpenArray and NanoString show a definite
correlation in quantification of these mRNAs; however, it is
clear that a less consistent measurement is observed using
qPCR. These plots also display the reliability of each
platform by producing results with the expected trends.
Previous literature indicates up-regulation of Cyplbl
(Walker et al. 1999; Boutros et al. 2008, 2011) and down-
regulation of Inmt (Boutros et al. 2008, 2011) by TCDD in
rodent liver. Our qPCR data for Cyplbl show down-
regulation at low doses (<0.1 wg/kg at 19 h) of TCDD
and up-regulation at higher doses in both the TCDD-
sensitive and TCDD-resistant strains, with OpenArray
showing a similar response in just the TCDD-sensitive
strain. Our gPCR data also show a less consistent response
to TCDD by Inmt than is expected in the sensitive strain.
Thus all three platforms show good general concordance,
but with greater variability in the PCR data.

This increased variability in the PCR data highlights
some important differences in the trade-offs involved in
each of the platforms. We suspect that this elevated noise,
even relative to the PCR-based OpenArray platform, is due
to an increased variability in the sample preparation caused
by the larger amount of technician pipetting and plate
setup required for conventional qPCR. To put this in
perspective: qPCR data were obtained from 42 separate
384-well PCR plates prepared by three technicians with
similar, but not identical, results (Supplemental Table 3)
over several months, while the OpenArray RT-PCR was
performed using four plates prepared by a mechanical
liquid handler, and the NanoString was performed in
a single reaction. The noise spectrum of these data
therefore corresponds exactly to the amount of sample
handling required. However, in contrast, NanoString data
consistently compressed observed fold changes relative to
the other two platforms. This suggests that there is a clear
bias/variance trade-off across the platforms.

Our third general observation is that the platforms
showed remarkable sensitivity to data-analysis consider-
ations. Output from both the qPCR and OpenArray
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were calculated using the expression of
several reference genes as the normali-
zation reference. To our surprise, the
performance of reference genes varied
by platform, suggesting that great care
needs to be used in selecting them
(Pohjanvirta et al. 2006). These platform-specific differ-
ences may be a result of slight differences in probe
placement or specificity, leading to detection of distinct
splice variants or other transcript isoforms. Another form
of analytical variability that we discovered was a profound
sensitivity of NanoString data to preprocessing methodol-
ogies. Particularly intriguing is that the quantile normali-
zation in very wide use for microarray data (Bolstad et al.
2003; Irizarry et al. 2003) was extremely ineffective on
NanoString data. These results strongly suggest that a large-
scale comparison study of NanoString preprocessing
methods on a gold-standard data set would be of significant
value.

In summary, our platform evaluation shows that each
technology has advantages and disadvantages that need to
be considered on a per-application basis. Sample prepara-
tion is the greatest source for error in any application. The
multiple steps from sample collection, RNA extraction,
reverse transcription, and data acquisition all provide
opportunities for the introduction of error. In this sense,
NanoString has the simplest preparation because it does
not require reverse transcription, thereby reducing the
likelihood of introducing technical variation. The addi-
tional controls provided on each assay, both positive spike-
in controls and negative hybridization controls, provide
additional normalization options that are unavailable in
qPCR. However, the multitude of potential normalization
methods can prove confusing and can provide different
results if not used consistently. OpenArray RT-PCR and
standard qPCR have similar workflows and analyses; how-
ever, more samples and more genes can be analyzed in
a single run on the OpenArray platform than with standard
qPCR. Another consideration is the amount of sample and/
or other reagents available for analysis. Data in this study
were generated using 100 ng of RNA either directly for
NanoString or for conversion to cDNA for OpenArray RT-
PCR with ~500 ng of RNA converted to cDNA for qPCR,
assuming 100% reverse transcription efficiency. NanoString
gives the advantage of providing a direct measurement of
abundance rather than fluorescence-based values, although
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FIGURE 5. NanoString Technologies suggests numerous methods for normalization of the
mRNA counts. We compared variations of our initial method to determine whether or not the
correlation with our qPCR data could be improved. (A) Our initial normalization involved
using only the positive control counts and reference gene counts. Alternate methods analyzed
include (B) using only the positive control counts, (C) adding the quantile distribution method
to the method in A, (D,E) adding various background noise subtraction methods—either the
mean or maximum background count was subtracted—to A, and (F) using a different positive
control count normalization.

that was not exploited in this analysis.
OpenArray provides results using a
“gold-standard” technology, while re-
moving most of the user noise inherent
to standard qPCR. The ability to exam-
ine a specific set of genes on a wide
range of samples, using only minimal
sample and reagents and having a rela-
tively short turnaround time for results
with reduced man-hours per sample,
makes both of these methods suitable
for use in medium-throughput applica-
tions such as candidate gene validation
and for use as clinical tools.

MATERIALS AND METHODS

Animal handling and treatment

The experimental design of this study is
outlined in Figure 1. A total of 165 male
rats of the Long-Evans (Turku/AB) and
Han/Wistar (Kuopio) strains were used,
henceforth designated L-E and H/W, re-
spectively. All animal study plans were ap-
proved by the Animal Experiment Commit-
tee of the University of Kuopio and the
Provincial Government of Eastern Finland.
Rats were housed individually in suspended,
stainless steel, wire-mesh cages with feed
(R36, Ewos, Sodertdlje, Sweden) and water
freely available. The animal room was main-
tained at 21.5°C * 1°C with 55% * 10%
humidity and a 12-h light/dark cycle (using
artificial lighting). Animals were divided
into control and treatment groups such that
the mean body weight across groups was
similar. The control group consisted of 51
animals, while the TCDD-treated group
consisted of 114 animals further divided
into various subtreatment groups by treat-
ment dose and time. The control group was
given corn-oil vehicle (4 mL/kg by gavage)
and the treated group was given TCDD in
vehicle at 11-15 wk of age (again by gavage).
Rats given only corn-oil vehicle were di-
vided into groups and euthanized at mul-
tiple time points post-administration. Ani-
mals in the time-course group were treated
with 100 pg/kg TCDD and euthanized at
specified time points (from 1.5 h to 16 d
post-administration). Animals in the dose—
response group were treated with doses vary-
ing from 0.001 pg/kg to 3000 pg/kg and
euthanized 19 h later. The TCDD doses, time
points, and number of animals in each group
are displayed in Figure 1, B and C, and each
individual sample treatment is available in
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Supplemental Table 4. The animals were euthanized by decapita-
tion. All animal handling and reporting comply with the ARRIVE
guidelines (Kilkenny et al. 2010).

RNA extraction

The liver of each animal was excised, sliced, and snap-frozen in
liquid nitrogen post-euthanasia. Frozen tissues were shipped to
the analytical laboratory on dry ice and stored in the vapor phase
of liquid nitrogen. Tissues were ground to a fine powder using
a liquid-nitrogen-cooled mortar and pestle (~30 mg of tissue per
extraction). The frozen powder was transferred into a 14-mL tube
(Sarstedt) containing 600 wL of RLT buffer supplemented with
10 L of Antifoam A (Sigma-Aldrich) and rapidly homogenized
using a Brinkmann Polytron homogenizer (Polytron PT1600E
with a PT-DA 1607 generator) for 30 sec or until the powder was
thoroughly disrupted. RNA was extracted using QTAGEN RNeasy
Mini kits following the manufacturer’s instructions (QIAGEN).
The total RNA quantity was determined by NanoDrop UV
spectrophotometry (Thermo Scientific), and RNA quality was
verified using the Agilent 2100 Bioanalyzer with RNA 6000 Nano
Kits (Agilent Technologies). Protein contamination was assessed
using the 260/280 absorbance ratio as determined by NanoDrop.
NanoDrop and Bioanalyzer results are available in Supplemental
Table 4. At this point, RNA treatment varied depending on the
requirements for each platform being compared (Fig. 1A).

Quantitative PCR

RNA was reverse-transcribed using High Capacity cDNA Reverse
Transcription Kits (Applied Biosystems) following the manufac-
turer’s instructions. Briefly, a reverse-transcription master mix
was prepared using random primers and MultiScribe Reverse
Transcriptase, 10 wL of which was added to 1 ng of RNA for a
20-pL reaction. Reverse transcription was performed (thermal
cycler set to run for 10 min at 25°C, for 2 h at 37°C, and for 5 min
at 85°C followed by a rapid cooling to 4°C) to synthesize cDNA.
Assuming a 100% reaction efficiency, cDNA was diluted to a
concentration of 5 ng/pL in RNase-free H,O and stored at —20°C.
The gene set for evaluation consists of genes previously de-
termined to be significantly altered by TCDD in both mice and
rats through microarray analysis (Boutros et al. 2008). Primer and
probe sets for use in QPCR were designed using the Real-Time PCR
Assay Design Tool (http://www.idtdna.com/Scitools/Applications/
RealTimePCR; Integrated DNA Technologies). Primer and probe
sequences were analyzed using the nucleotide Basic Local Align-
ment Search Tool (Altschul et al. 1990) on the Rattus norvegicus
nr/nt database (June 2010) to confirm gene specificity. Primer and
probe sequences for qPCR are provided in Supplemental Table 5.
Assay efficiencies were assessed both before and upon comple-
tion of the study and were determined to be satisfactory (Sup-
plemental Table 5). The PCR reactions were set up in 384-well
plates using the above primer/probe sets with 5 ng of cDNA per
reaction with TagMan Gene Expression Master Mix (Applied
Biosystems) in 10-pL reactions. Each reaction contained 5 pmol
of each primer and 2.5 pmol of probe. qPCR was performed
using the 7900HT Fast Real-Time PCR System (Applied Bio-
systems). Reactions were run using the AACt standard 384-well
PCR plate settings; an initial 2-min hold at 50°C was performed
to ensure that any UTP-containing contaminants from previous
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PCR reactions were fully digested by the AmpErase UNG nu-
clease. Polymerase was activated by a 10-min hold at 95°C, and
reactions were carried out by 40 cycles of 15 sec at 95°C and 1
min at 60°C. Samples from every animal were analyzed using
each gene assay in duplicate. The relative quantification was
determined using the comparative Cq method. The qPCR results
were collected using Sequence Detection System Software (v2.3),
and C, values were determined using RQ Manager software
(Applied Biosystems). All qPCR processes and reporting comply
with MIQE guidelines (Bustin et al. 2009).

The unprocessed Cq values were loaded into the R statistical
environment (v2.12.2) to be processed. Data points flagged by the
SDS software as NAW (“not amplified well”) were removed from
the analysis. The normalized expression level (NEL) of a gene is
the amount of measured expression of the gene in relation to the
measured expression of reference genes. The NEL is typically
calculated as Y;(M) = X;(M) — N;, where M refers to the exper-
imental gene, X; refers to each sample’s raw expression data, N;
refers to the mean expression of the reference genes, and Y; to the
sample’s NEL (Barsyte-Lovejoy et al. 2006). For this study, the
NEL was calculated as Y;(M) = log, 2XM)=N)) "4 slight modifi-
cation of the method described previously accounting for the fact
that Cq values are already log-space (Barsyte-Lovejoy et al. 2006).
The reference genes used in this study, Gapdh and Pgkl, had been
previously demonstrated to be refractory to dioxin exposure under
a wide range of conditions (Pohjanvirta et al. 2006).

NanoString

RNA was diluted to a concentration of 50 ng/pL, and an excess of
50 wL of each sample was loaded into one well of a 96-well plate
and sent to the UHN Microarray Center (Toronto, ON) on dry ice
for analysis. Only 100 ng (2 wL) of each sample was required for
analysis using a NanoString nCounter. The desired mRNA targets
were submitted in advance, and the required CodeSet (multi-
plexed color coded probe set containing both control and target
probes) was designed and synthesized by NanoString before RNA
analysis. Probe sequences were verified by BLAST analysis,
searching the R. norvegicus nr/nt database (June 2010), to ensure
that each identified a single gene. The probe IDs used are provided
in Supplemental Table 6. Each sample was analyzed in a separate
hybridization reaction.

The resulting data consisted of direct molecule counts present
in the sample as determined by the number of bar-coded probes
detected at the end of the process. These data were compiled in
Microsoft Excel using NanoString’s Raw Code Count Collector
Tool for the initial data normalization to adjust for experimental
variability according to the manufacturer’s recommendations. The
positive spike-in RNA control counts were summed for each lane,
and the average across all lanes was taken to produce a normal-
ization reference. A normalization factor was calculated for each
lane using the sum of the positive spike-in RNA control counts
divided by the normalization reference. The remaining experi-
mental and control code counts were multiplied by this factor to
account for hybridization efficiency (NanoString Technologies).
Normalized data were then loaded into the R statistical environ-
ment (v2.12.2), and counts were further normalized to account
for variation in the concentration of RNA in the initial sample
following the manufacturer’s data analysis guidelines. The geo-
metric mean of the code counts for the reference genes Eeflal,
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Gapdh, Hprtl, Ppia, and Sdha (Pohjanvirta et al. 2006) for each
lane was calculated, and the average of these across all lanes was
used as the normalization reference. A normalization factor was
then calculated and applied as above. Normalized counts were
log,-transformed.

There are various alternative methods currently described
throughout the literature for the normalization of NanoString
data. NanoStringNorm (v0.9.4) is an open source package for the
R statistical environment that includes many of these normaliza-
tion methods for each step of the process in an extensible
framework (Waggott et al. 2012). Using this package, we analyzed
our data by applying numerous combinations of normalization
methods for each step (hybridization efficiency using the positive,
spike-in control counts, background noise using the negative
hybridization control counts, sample content using either refer-
ence gene counts or a subset of the total probe counts, as well as
various other suggested methods including quantile and z-score
normalizations). Analyses using a subset of these combinations are
available in Supplemental Table 2.

To verify the generality of our analyses, we also analyzed data
using the nSolver software developed by NanoString. nSolver
allows for the use of a limited number of normalization methods
using an interactive gui. As above, all available combinations of
methods were assessed.

OpenArray

RNA was reverse-transcribed using High Capacity cDNA Reverse
Transcription Kits (Applied Biosystems) following the manufac-
turer’s instructions with a slight modification to the volumes used
in order to produce the 2.5 ng/wL cDNA required for the
OpenArray system. Samples were loaded into 96-well plates (25
WL total each) and sent to Life Technologies (Applied Biosystems)
for analysis. Accession numbers for the genes analyzed by Open-
Array are provided in Supplemental Table 7. OpenArray was
performed in duplicate on each sample. OpenArray Real-Time
PCR results from each run were merged and loaded into the R
statistical environment (v2.12.2). Normalized expression levels for
each experimental data point were calculated as above for gPCR
using the reference genes Eeflal, Gapdh, Hprtl, Pgkl, Ppia, and
Sdha (Pohjanvirta et al. 2006).

Statistical analysis and data visualization

Data from each platform were analyzed first individually then
comparatively in the R statistical environment (v2.12.2). Paired
Student’s t-tests were performed to compare platforms. #-test
P-values and estimated differences in the fold changes are given
in Table 3. The data from each platform were compared and
visualized with the lattice (v0.19-23), latticeExtra (v0.6-15), and
VennDiagram (v1.0.0) (Chen and Boutros 2011) R packages.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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