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Highlights
qPCR is more complex than perceived
by many scientists.

The production of an amplification
curve and an associated quantitative
cycle value does not necessarily mean
interpretable data.

The MIQE guidelines and associated
methodology articles published there-
after, underline the ongoing drive to
help scientists produce reproducible
Quantitative PCR (qPCR) is one of the most common techniques for quantifi-
cation of nucleic acid molecules in biological and environmental samples.
Although the methodology is perceived to be relatively simple, there are a
number of steps and reagents that require optimization and validation to ensure
reproducible data that accurately reflect the biological question(s) being posed.
This review article describes and illustrates the critical pitfalls and sources of
error in qPCR experiments, along with a rigorous, stepwise process to minimize
variability, time, and cost in generating reproducible, publication quality data
every time. Finally, an approach to make an informed choice between qPCR
and digital PCR technologies is described.
data from qPCR, culminating in a sim-
ple, stepwise methodology to ensure
high-quality, reproducible data from
qPCR experiments.

The concept of data normalization has
led to the ongoing publication of arti-
cles solely focused on this subject for
various sample types and experimen-
tal parameters.

The analysis of qPCR data can be
challenging, especially as experiments
grow in sample number and complex-
ity of biological groups. A defined
approach to qPCR data analysis is
necessary to clarify gene expression
analysis.
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qPCR Technique: The Perception and Reality
qPCR (see Glossary) is generally viewed by researchers as a powerful technique that can
provide precise and quantitative data reflecting the biology of the tested experimental param-
eters. However, without following strict guidelines, validation and data analysis procedures, the
results can be far from valid [1,2]. Unfortunately, the adoption and transfer of inadequate and
varied protocols between individual laboratory members and laboratories throughout the
scientific community have led to frustration in reproducing data [3–5]. This has driven the
production of the minimum information for publication of quantitative real-time PCR experi-
ments (MIQE) guidelines and related methodology articles to help the scientific community in
augmenting experimental rigor and uniformity to produce more reliable and consistent data [6–
8]. Nevertheless, there remain concerns regarding the quality of qPCR results in the published
literature [1,2].

When designing experiments for qPCR, all protocols, such as sample handling, harvesting,
nucleic acid extraction, reverse transcription, and qPCR should be described and vetted in
detail. Mistakes or assumptions can be made in the planning process, resulting in a flawed
experimental design with results and conclusions based on artefacts of pre and/or post sample
handling procedures as opposed to the true effect of the tested experimental parameters [7].
Poorly optimized reactions can result in data that are consequent to a combination of sample
contaminants and/or poor annealing temperature, leading to misinterpreted results and con-
clusions that are difficult or even impossible to reproduce [9,10].

Despite the MIQE guidelines and other methodology articles, the variability and reproducibility
pitfalls associated with qPCR remain elusive for many laboratories [7,11]. This review article
describes the major sources of error associated with a qPCR experiment and strategies for their
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Glossary
Absolute quantification: the
quantification of the absolute quantity
of a target gene in a nucleic acid
sample. This requires the application
of a standard curve using a known
concentration of starting sample.
Cq: the quantitative cycle, where the
amplification curve from a given
target/sample combination crosses
the threshold or is fit to a second
order derivative to equate the cycle
at which the amplification curves are
detectable and quantified.
dPCR: digital PCR technology for
precise quantification of the absolute
concentration of a given target in a
nucleic acid sample.
MIQE: minimum information for
publication of quantitative real-time
PCR experiments. Pronounced
‘MIKEE’, these guidelines provide a
framework to conduct qPCR
experiments and the information and
terminology required for submission
of qPCR data to any journal.
Mutation abundance: the relative
abundance of a mutant allele with
respect to the wild type in a given
sample.
Normalized relative expression:
the relative expression of the target
gene normalized to that of multiple
reference genes within the same
biological sample (Figures 4D and 5).
qPCR: quantitative polymerase chain
reaction. A blanket term that covers
any type of qPCR experiment for
both absolute and relative
quantification.
Relative quantification: the fold
difference between a particular
reference (typically control) sample
relative to all other samples in the
experiment. Typically, the
calculations result in the control
biological group giving a relative
expression of 1 and the treatment
groups are either fold increase or
decrease of control (Figure 5).
RT-qPCR: reverse transcription
qPCR, which implies that the starting
sample was from messenger RNA,
which in turn required reverse
transcription to cDNA prior to
performing qPCR.
minimization, along with a rigorous, stepwise approach to producing accurate and precise
results. Finally, a simple decision tree is proposed to choose between digital PCR (dPCR) and
qPCR technologies to minimize cost and time to publication for any type of sample and target
abundance.

Predominant Sources of Error Associated with a qPCR Experiment
There are two major sources of error in any life science experiment that can lead to a high level
of variability between test conditions: random and systemic error [12]. Random error is
associated with flawed experimental design parameters, which are primarily manifested in
biological variability and subsampling error. Systemic error arises from improper use or
calibration of equipment and computational software, leading to technical and calculation
errors. Each can contribute significantly to the total error derived from an experiment, producing
nonstatistically significant and/or artefactual data that is unrepresentative of the tested param-
eters. By isolating error sources and understanding how to minimize their impact through
careful experimental design and good technique, solid, reproducible, and statistically significant
results can be achieved that will stand the test of time in the literature.

Random Error Sources
Biological Variability
The most challenging and least considered aspect of many experiments is the appropriate
selection of a randomized set of individual samples (i.e., biological replicates) per biological
group (i.e., treatment/experimental conditions) while minimizing their inherent variability [13].
Both the transcriptome and proteome are highly sensitive to the inherent biological differences
between samples. In fact, gross differences in transcription have been demonstrated between
individual cells plated from the same passage in a single petri dish [14,15]. Therefore, careful
thought and planning must go into the sourcing, randomized selection, and number of samples
per biological group to ensure statistically significant and reproducible results that give the
precision and accuracy for publication (Figure 1A).

Apart from the inappropriate selection of a randomized set of samples that represent the
population, nonreproducible error can also be introduced from: (i) lot-to-lot differences in
growth medium or animal feed [16]; (ii) variation in temperature, time, incubation conditions,
and circadian regulation between samples (Figure 1B) [17–19]; (iii) tissue sections or cell
subpopulations extracted from a specimen (Figure 1C) [17,18]; (iv) particularly for female
animal models, the synchronization of hormonal cycles [20,21]; and (v) for environment and
plant material, time of day, amount of light, temperature, soil microenvironment, and in situ
sampling and storage techniques [22,23]. Each of these experimental design factors can
significantly increase biological error and variability, which can ultimately lead to false
conclusions.

Subsampling Error
In most molecular biology experiments, a portion of the sample (a subsample) is tested. The
error associated with quantification of the number of molecules from a portion of the sample
and extrapolating the result to the total is termed subsampling error (Figure 2) [24]. For example,
if a 1 ml subsample of cDNA is taken from a total volume of 25 ml with a concentration of six
target molecules per ml, the expected number of copies in the subsample would be six.
However, the result would likely range between four and eight copies. Assuming no technical
error in pipetting, the deviation in the result from the predicted six copies is the subsampling
error, which is much more pronounced in sample concentrations below about two copies per
microliter (Figure 2).
2 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Figure 1. Planning and Scoping a Quantitative PCR (qPCR) Experiment. (A) Biological group (BG): tested
experimental conditions (i.e., control (BG1) vs treatment (BG2). Time point (T) (i.e., 0 hour (T0) and 1 hour (T1) post-treatment).
Biological replicate (Bio reps): number of independent biological specimens from which cDNA/gDNA is produced (i.e.,
individualsamples).Technical replicate (Techreps):numberof repeatsperBiorep(i.e., samecDNA/gDNAsamplepipetted into
multiple wells). Targets: genes interrogated for differential expression or abundance including chosen reference genes. Wells:
total number of microtiter plate wells required for qPCR exclusive of optimization experiments for primer validation (see
Figure 4). (B) Time dependence on transcription of targets A, B, and C post-treatment. Choosing a random time point (X) post-
treatment may result in no data and/or artefactual data that do not reflect the true response of the tested targets. Performing a
preliminary time course study (dotted line) ensures the selection of optimal time points for each target. (C) Influence of tissue
sectioning on data quality. Whole tissue RNA extract may show no change, whereas dissected tissue may produceexpression
differences between biological groups (i.e., fourfold change when comparing expression of occipital lobe or temporal lobe)
consequent to target dilution in whole tissue and enrichment in sections.
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Figure 2. Subsampling Error on Quantitative PCR (qPCR) Data between Triplicate Technical Replicates for High and Low DNA Levels. (A) Minimal
error and tight quantitative cycle (Cq) values are observed at higher concentrations of DNA. (B) High error and variability in Cq values between technical replicates occurs
for ‘sub’ samples with low DNA levels. (C) Predicted subsampling error correlated to sample size. (D) Demonstrated effect of stochastic amplification/measurement
uncertainty and subsampling error on quintuplicate replicates of three dilutions of DNA. Near 30 Cq the replicates are tight, but above 30 Cq variability increases
(stochastic amplification/measurement) until a critical dilution is reached where only two of the five replicates give amplification curves (subsampling error).
Abbreviations: CV, coefficient of variation; RFU, relative fluorescence unit.
The coefficient of variation (CV) measures the variation around the mean, and is a useful tool to
assess the degree of data inconsistency (Figure 2C). The standard deviation (SD) and CV
associated with subsampling error can be calculated from the expected number of copies in a
given sample as follows:

M = expected number of target molecules under binomial approximation

SD ¼
ffiffiffiffiffi

M
p

CV ¼
ffiffiffiffiffi

M
p

M

From the previous example, the average number of copies for several 1 ml subsamples will be
six but the SD of this measurement is (

p
6 = 2.45) and the %CV is (2.45/6*100 = 40.8%).

Subsampling error contributes to more than 10% of the variance when the subsample is below
100 copies, and above 30% when the subsample is below ten copies (Figure 2C,D) [24]. This
necessitates running more technical replicates (i.e., subsamples) for samples of very low
concentration.

Systemic Error Sources
Pipetting Error, Nucleic Acid Contaminants, and Controls
One of the most common and problematic sources of technical variability in molecular biology
stems from pipetting and the use of inappropriate pipettes and sample volumes. Many
4 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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laboratories inadvertently use poorly calibrated pipettes coupled with tips and technique that
may be inaccurate for small volumes [25,26]. This can produce variability ranging between 5%
and 37% CV [27]. It becomes a major problem when samples are serially diluted because the
pipetting errors between each dilution are propagated, resulting in gross variability between
data points [28,29]. For qPCR, a good methodology to minimize pipetting error is to apply a
60:40 ratio of master mix to cDNA/gDNA sample (Figure 3A), which permits: (i) the use of the
same pipette and tips, (ii) efficient mixing of sample in the reaction mix, and (iii) pipetting volumes
that correspond to the midrange of the pipette for high accuracy.

Nucleic acid contaminants represent another major source of error in qPCR. This necessitates
the inclusion of no template controls (NTCs) on each plate to assess the level of cDNA or gDNA
contamination that may stem from the individual reaction components (Figure 3A). No reverse
transcription controls (NRTs) are also important to assess the levels of genomic DNA con-
taminants from the initial RNA extracts of a given project [30].

Sample Treatment, Handling, Harvesting, Nucleic Acid Extraction, and Reverse
Transcription
Given the sensitivity of the transcriptome to even minor changes in the surrounding environ-
ment, care and rigor must be applied to ensure uniformity in: (i) sample handling throughout the
experiment; (ii) activity/potency between lots of the same compound or reagent(s) used for
gDNA or cDNA samples
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Figure 3. Master Mix Preparation, Plate Loading and Measurement Uncertainty. (A) To minimize error linked to pipetting, the volume of cDNA/gDNA in the
qPCR reaction mix should account for approximately 40% of the total reaction volume. Include a no template control for each master mix (target) loaded on a given plate.
Test no reverse transcription controls for the first RNA extracts to ensure minimal gDNA contamination. To avoid interplate variability, all samples for a given target
should be pipetted on the same plate. If this is not feasible, interplate calibration should be performed, or digital PCR (dPCR) should be considered. (B) Measurement
uncertainty clarified. Each well represents a technical replicate (TR) from the same sample, where the amount of target template transferred to each reaction is
consistent but low (<100 copies). Measurement uncertainty stems from the amplification of fractional quantities of template in the initial PCR cycles, resulting in variable
quantitative cycle (Cq) values between technical replicates (i.e., if only a fraction of the available template amplifies in cycle one, and the remainder begin amplification in
the following cycles, the amplification curve will shift higher as shown in TR #2 and TR #3).
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treatment [16]; (iii) tissue or cell harvesting and homogenization techniques; and (iv) sample
storage and freeze/thaw conditions [31].

RNA/DNA extraction procedures and storage can also play a significant role in data quality, and
good kits are available to produce excellent RNA, DNA, or protein extracts to ensure consis-
tency in the quantity, quality, and purity of extracted nucleic acids [31–33]. However, the
appropriate choice of extraction kit is critical to minimize background contaminants that can
alter the Cq values. This is highly dependent on the sample and no single kit serves all
applications [32].

For RT-qPCR specifically, significant variability can arise from the reverse transcription (RT) of
mRNA to cDNA where the results for the same sample can vary by two to threefold depending
on the amount and quality of mRNA used in the RT reaction [34]. Furthermore, the amount of
target mRNA with respect to background can have a major impact on the downstream results,
which can also be RT kit dependent [35]. Finally, the components of the RT reaction can be
inhibitory to the downstream qPCR reaction [35]. Hence, care must be taken in adequately
diluting the RNA and the resulting cDNA, to ensure efficient RT and qPCR reactions that reflect
the true proportion of the mRNA target(s) in the original samples.

Stochastic Amplification and Measurement Uncertainty
When the target DNA is very dilute (less than ten copies per microliter), the primers may not land
on all the template molecules in the first cycle. Thus, different fractions of the original starting
template are amplified from the first and second cycles before complete amplification of all
template has been initiated (Figure 3B). This can lead to large variability between the technical
replicates of a given sample that can easily range between 10% to 200% CV, particularly when
template is below 100 copies per reaction [i.e., the quantitative cycle (Cq) values are greater
than 29 cycles]; (Figure 2D) [6,36,37]. This variability can only be minimized by interrogating a
larger proportion of the sample from more technical replicates and using the average Cq for
downstream calculations.

Multiplexed Experiments and Reaction Efficiency
One of the advantages of qPCR is the ability to perform multiplexed detection and quantification
of several targets within the same sample using probe-based chemistry. This is particularly
useful when working with very precious samples containing low quantities of nucleic acids.
However, qPCR is entirely dependent on reaction efficiency where a Cq value is only repre-
sentative of the template amount when the reaction efficiency is near 100% (Figure 4A–C). This
necessitates a rigorous validation of individual targets in a representative sample (Figure 4B,C)
to ensure their reaction efficiencies and annealing temperatures are similar prior to multiplexing,
coupled with limited crosstalk between primers and probes when combined in one reaction
[38]. Multiplexed preamplification offers the advantage of increasing the starting quantity of a
selected panel of targets to permit their detection and quantification from individual SYBR
Green containing qPCR reactions without the constraints of probe-based multiplexing [39,40].
Furthermore, qPCR offers flexibility in running small projects with hand pipetting, and large-
scale projects requiring high-throughput sample processing using robotics liquid handlers and
automated plate loading and reading.

qPCR Calculations and Error Propagation
The data analysis and associated calculations for relative quantification involve multiple steps
(Figure 5): (i) extract the Cq values for each sample after inter-run calibration and calculate the
mean Cq from the associated technical replicates; (ii) determine the relative quantity by raising
6 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Figure 4. Validating a Quantitative PCR (qPCR) Experiment to Minimize Error and Maximize Data Quality. (A)Nonvalidatedprimerscouldgivevariableand/or
artefactual data that do not reflect the true target abundance in each sample. (B) Primer validation using thermal gradient and gel electrophoresis. Step #1A: Thermal gradient and
agarose gel validation. To validate primers, an equalized pool of samples from each biological group is diluted 1:20 and initially tested using a thermal gradient to determine the
optimal annealing temperature, average level of expression, and unique product for each target from melt curve and gel analysis. Step #1B: The quantitative cycle (Cq) value from
the optimal annealing temperature range canbe used as a guide to establish thestandard curvedilution factor foreach target (i.e., if theCq value foroptimized temperature range is
between 10 and 16, use a 1:8 serial dilution series of the pooled cDNA sample in water). (C) Standard curve validation. An eight-point standard curve is tested for each primer pair
using the same pooled sample and the appropriate dilution factor as determined from the thermal gradient data (Step #1B) to cover the widest dynamic range possible.
Amplification efficiency, as determined from the slope, should range between 90% and 110%. Deleting the highest and/or lowest concentration points from each primer validation
standard curvemaybenecessary toachieve thebestefficiency.Thedilution factor fromthemidpoint is thenusedtodilute the individualexperimentalsamplesper target,assuming
that the pooled DNA sample represents the average abundance of each target for the experiment (i.e., equalized pool of the same number of DNA samples from each biological
group). This ensures minimal presence of contaminants affecting primer efficiency and accurate quantitative data. (D) Consequence of using poorly validated reference genes.
qPCR data can change dramatically when normalization is performed using a stable versus unstable reference gene.
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Figure 5. Data Analysis for a Typical Relative Quantification Experiment. (A) Rigorous data workup. In this example, DER5 expression is measured between
treated and untreated biological groups, each containing three biological replicates and two technical replicates (data for technical replicates is not shown). Actin and
HPRT are used as reference genes. First, the mean quantitative cycle (mean Cq; column 3) of the technical replicates for each sample/target combination is calculated [i.
e., for actin from the untreated sample 1 (Untreated_S1) the mean Cq is 28.7]. The average Cq of all samples in the control group (i.e., untreated) for each target is then
determined (column 4). The relative difference (DCq) between the average Cq for the control group (column 4) and the mean Cq (column 3) per individual sample within
each target is assessed (column 5). The relative quantities are calculated from the DCq (i.e., 2DCq) where in this case, it is assumed that reaction efficiency is 100%, and
hence a base of two is applied (column 6). Otherwise the base should be one + PCR efficiency (E) [as determined from the standard curve (Figure 4C)]. In effect, the
relative quantity represents the fold change between the biological groups for each sample/target combination prior to reference gene normalization. For each biological
group/sample combination, a normalization factor is determined from the geometric mean of the associated reference gene relative quantities (column 7). The relative
normalized expression for each target gene (DER5 in this example) is then calculated per sample by dividing the relative quantity by the normalization factor (column 8)
followed by log transformation (column 9). The average relative normalized and log transformed expression for each biological group is then calculated using the
geometric mean (columns 10 and 11). The standard deviation (SD), standard error of the mean (SEM), and 95% confidence interval [in this case a t statistic of 4.3 was
used based on three samples per biological group (i.e., 2 degrees of freedom)] of each group are then calculated from the log transformed normalized expression
(columns 12–15). (B) Average relative normalized expression graphical representation with appropriate error bars (in this case SEM).

8 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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one + the PCR efficiency (E) [determined from the standard curve (Figure 4C)] to the DCq [i.e.,
(1 + E)DCq]; (calculated by subtracting the mean Cq of all the samples within the control group
from the mean Cq of the technical replicates from each sample); (iii) enumerate the normal-
ized relative expression (equivalent to DDCq after log transformation) per sample by
dividing the relative quantity of a given target/sample (step 2) by the geometric mean of
the relative quantities of two or more reference targets; (iv) compute the average normalized
expression of the samples in each biological group; and (v) perform statistical analysis based
on the log transformed normalized expression per sample (Figure 5: column 9) [41].These
calculations are complex because qPCR data are relative by nature between samples or
groups of samples, with normalization to reference genes, and calibration between plates.
Additionally, qPCR measurements are made on the log scale (Cq value) with statistical
analysis performed in Cq space (i.e., DDCq values or using log-transformed relative normal-
ized expression), while expression levels are reported after linear transformation of the DDCq
results.

Themethodologybywhichnormalizedexpressioncalculationsareperformed,coupledwiththe
amalgamation of data from multiple experiments that typically span multiple plates, can be
daunting for any researcher. Many laboratories create Microsoft Excel spreadsheets with
premade formulas to automate the analysis process. This requires copy/paste manipulations
fromtherawdatafiles,necessitatingthecareful triageofresultstofit theconfinesoftheformulas
anddataflow.Multi-plateexperimentscanintroduceanotherchallengeinthemanualfashionby
which the Cq values from each experiment are entered and potentially reconfigured and rear-
rangedinExceltoaccommodatedifferentplateconfigurationsbetweenindividualexperiments.
Inthehandsofeventhemostexperiencedandmethodicalscientist,thephysicalmanagementof
largedatasetsinExcelcanresultincalculationerrorsthatmaygounnoticed,resultinginerroneous
summarized results and conclusions [42].

The common sources of error in a given experiment cannot be entirely avoided, but by
clearly understanding where and how they can arise, measures can be taken for their
minimization. Given that scientists continue to push the limits of sensitivity for detection of
biomolecules in smaller samples, more care must be taken to reduce the sources of error,
improve precision, and achieve reproducible, statistically significant data particularly with
low target abundance.

The Design of a qPCR Experiment to Minimize Error and Maximize Data
Quality
In order to achieve reproducible data that truly reflect the experimental parameters, a
sequence of key steps must be strictly followed to circumvent and minimize both random
and systemic sources of error (Table 1), one of the most important of which is primer
validation to assess annealing temperature, melt curve, and amplicon size (Figure 4A–B)
[43]. Subsequent standard curve analysis is critical, because only when reaction efficiency
is close to 100% are the Cq values representative of the target concentration in each
sample (Figure 4C) [44]. Furthermore, accurate normalization of qPCR data from the
geometric mean stability of multiple reference genes is important because an unstable
target can produce artefactual data that do not represent the true expression differences
between samples (Figure 4D) [45,46]. For projects that are not conducive to the selection of
endogenous reference genes (i.e., developmental studies), an exogenous internal positive
control may be required [47]. Finally, to avoid the ramifications of interplate variability, it is
best to pipette all samples and associated replicates for a given target on a single plate
(Figure 3A).
Trends in Biotechnology, Month Year, Vol. xx, No. yy 9
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Table 1. Stepwise Approach to Performing a Valid qPCR Experimenta

Step Description Sub steps Instruction

1 Experimental
design

Procedure List the best targets, samples, and treatments based on previously acquired, vetted, and validated data or
literature (Figure 1A).

Biological groups Define the appropriate biological groups (i.e., treatments, knockout, time points, etc.) and various
combinations thereof (Figure 1).

Replicates Biological (samples): number of animals or number of cell culture plates per biological group, which is
determined with the aid of a biostatistician and/or a statistical power analysis (highly dependent on the
complexity of the organism). Technical: number of wells pipetted per cDNA sample from each biological
replicate (typically two or three); (Figure 1).

Experimental
conditions

Carefully note all controllable factors, such as: lot consistency in cell culture media, FBS, BSA, animal feed
and drugs or compounds, sex, and phenotype. Take pictures throughout the experiment and carefully note
any unusual changes in specific samples or specimens that may become outliers.

2 Tissue and cell
harvesting

Sample extraction
(complex organisms)

Sacrifice animals, extract and dissect tissue reproducibly and sequentially. Flash freeze in liquid nitrogen
immediately upon dissection (Figure 1C).

Sample extraction
(cells)

For adherent cells, quickly remove medium and then add lysis buffer from RNA extraction kit directly to the
plate. Generate a stable homogenate by scraping cells and pipetting up and down, then freeze.

RNA extraction
procedure

Research, explore, and test appropriate homogenization methods, which can vary between tissue and cell
types to ensure quality, reproducible data. Ensure extraction reagents are nuclease-free and use spin
columns to purify RNA from protein and chemical contaminants. DNAse treat the RNA extracts using
appropriate procedures [61].

3 Test RNA
samples

Minimize protein and
chemical
contaminants

Nanodrop the RNA samples to ensure an OD 260/280 of 1.8 or higher, and an OD 260/230 of 2.0 or higher.

Ensure RNA is intact Run about 400 ng per RNA sample on a bleach gel [62] (28S:18S ribosomal RNA bands should give a ratio
of at least one or higher). If samples are precious and limited, use an automated electrophoresis instrument
like the Bioanalyzer (RIN number of at least 7.0).

4 Reverse
transcription

Dilute RNA samples Normalize all extracted RNA samples to the same approximate concentration. For tighter data, normalize
using RiboGreen fluorescence [63]. Use same amount of RNA from each sample for reverse transcription.

Use a good kit Use a good reverse transcription kit containing: (i) a mix oligo(dT) and random hexamers for complete
coverage of the mRNA; (ii) RNAse H+ for one-to-one conversion of mRNA to cDNA; (iii) RNAse inhibitor and
robust enzyme mix to reverse transcribe mRNA over a broad dynamic range of concentrations. Test
different amounts of total RNA for a given sample type to produce optimal quality cDNA � using less total
RNA may yield better qPCR data.

5 Primer validation Thermal gradient The unique, copurified protein and chemical contaminants in nucleic acid extracts can affect primer
annealing. Prepare a 1:20 diluted cDNA sample from a pool of equivalent quantities of each treatment
condition, and run a thermal gradient (typically between 51 �C and 63 �C) of annealing temperatures
(Figure 4B).

Visualize the
amplicon

Run an agarose gel and sequence the amplicon to ensure primer specificity, purity, and identity (Figure 4B).

Assess reaction
efficiency, linear
dynamic range, and
include controls

For each primer pair, perform an eight-point standard curve from the pooled cDNA sample used for the
thermal gradient. Serially dilute the cDNA based on expression level per primer: High (Cq: 10–16), 1:8;
Medium (Cq: 16–23), 1:4; low (Cq: �23), 1:2 (Figure 4B). Dilute individual samples to the midpoint of the
efficient range (90% to 110%) of the standard curve (Figure 4C). Prepare and plate reactions appropriately
with required controls (Figure 3A).

6 Reference gene
validation

Survey literature for
potential reference
genes

Use the search term ‘qPCR reference gene [GeNorm or NormFinder or BestKeeper] [Organism and Tissue
of interest]’ using Google Scholar. Pick seven to ten targets from the articles, and validate the primers
(Figure 4B,C). A spike-in RNA or DNA sample into all test samples can help assess reference gene stability
and may also be a useful normalization target [47].

Confirm target
stability

Test the validated reference gene primers against three cDNA samples from each biological/treatment
group. Test stability using GeNorm, NormFinder and BestKeeper software. Normalize to multiple reference
genes (Figure 4D).

aAdapted and updated under a Creative Commons license from [8].
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Making the Choice between qPCR and dPCR
dPCR technology permits the quantification of absolute target copy numbers between
individual samples at reaction endpoint. This is accomplished through the segregation of
the qPCR reaction mix into thousands of partitions which are then interrogated after
thermocycling [48]. Thus, the dependence on reaction efficiency (Figure 4C) and interde-
pendence between samples (DCq; Figure 5) associated with qPCR, is virtually eliminated
[49]. Although qPCR can produce excellent data from a well-designed and executed
experiment (Table 1), there are parameters, sample types, and target nucleic acid levels
that are more challenging to assess with this technology [49,50]. The consequence of
inappropriate use of qPCR can result in dramatically increased cost, time, and most
importantly, loss of precious samples with no relevant data. There are some specific
applications for which care should be taken in pursuing sample analysis with qPCR and
where dPCR could be more appropriate.
Relative and Absolute Quantification in Contaminated and/or Low Target Abundant
Samples
qPCR has been the gold standard application with cDNA for gene expression analysis
[applying relative quantification (Figure 5)] and for absolute quantification using gDNA
extracted from environmental (e.g., lake, ocean and runoff water, soil, sludge, and air), human
and veterinarian clinical samples (e.g., paraffin embedded tissue or cells), feces, plant
material, or food samples. These sample types can be challenging due to the propensity
and variability of residual contaminants that could partially inhibit Taq activity and primer
annealing [49,50]. If the samples are not adequately diluted with the aid of a primer validation
standard curve (Figure 4C), the Cq values may not reflect the actual nucleic acid levels, but
rather a combination of target concentration and contaminant levels [49]. However, dilution is
only possible if the target nucleic acid levels are high enough to withstand attenuation without
compromising the data (Figures 2D and 3B) [49]. The use of externally spiked nucleic acids
has become a common tool to assess both differential levels of contaminants and data
normalization if required [47,51]. Inhibitor tolerant polymerases have also been developed to
help address variability between differentially contaminated samples [52]. In the case of
samples derived from widely different sources (i.e., environmental samples), consistency in
their dilution may not be possible, and the resulting Cq values would not reflect the cDNA
levels, leading to highly variable results [53]. Since dPCR is virtually efficiency independent,
consequent to endpoint data acquisition, the effect of contaminants between samples is
minimized [49,50]. This also makes the plexing of multiple targets in a single dPCR reaction
straightforward, thus permitting the quantification of multiple reference gene targets in each
sample for normalization [54,55].
Mutation Abundance Assays
Single nucleotide polymorphisms (SNPs) have been well characterized as biomarkers for a
number of cancers and viral infections [56]. qPCR is currently used to detect these targets in
circulating DNA purified from extracted body fluids to follow the effect of treatment [57].
However, the limit of quantification is approximately 5% mutation abundance, which could
represent high disease levels as opposed to early detection [58]. Therefore, many clinical
laboratories use standard PCR with preamplification and endpoint detection on agarose gels to
detect these biomarkers at much lower levels. However, the tradeoff is an inability to accurately
quantify the amount of target, or even to compare the effect of treatment over time with any
degree of precision [59].
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Under these two circumstances, dPCR technology provides more accurate and precise results
because it is much less affected by sample contaminants consequent to data acquisition at
reaction endpoint. There is also no requirement for standard curves or interplate calibration.
Furthermore, the effect of partitioning permits a much higher level of sensitivity specifically for
mutation abundance assays [57]. A simple experimental workflow has previously been
described to choose between qPCR and dPCR for any genomics experiment, and is summa-
rized in Figure 6 [49].
Poo led cDN A/gDNA sample dil ute d 1:20

Test all  prime rs in qPCR  at op �mized
annea ling temp (Figu re 4B)

Sigmoidal am pli fica�on curve;
sing le me lt curve peak (Figu re 4B)

Poo r am pli fica�on c urve;
mul�ple melt curve  peaks

Mul�pl e bands for a given
prime r pair

Sing le band p er
prime r pair

qPCR s tan dard cu rve
(Figure 4C)

Poor  data Soli d data

Poo r efficiency

Variable dataRun samp les  in dPCR Soli d data

Good  efficiencydPCR op�miz a�o n
[59]

Redes ign  prime rs

Run sam ples  in q PCR  with prop er
dil u�on  and p la�ng (Figu res  3A and  4C)  

Run q PCR  am pli cons on  a gel 
(Figu re 4B)

Figure 6. Criteria for Selecting between Quantitative PCR (qPCR) and Digital PCR (dPCR). Primer validation
should be performed at optimal annealing temperature to ensure a single amplicon is produced with acceptable reaction
efficiency. Primers that result in multiple products should be redesigned. Highly efficient primers (i.e., between 90% and
110%) with broad standard curve dynamic range are good candidates for qPCR. dPCR should be explored when using
primers with poor amplification efficiency. Alternatively, targets that are efficient but result in variable, artefactual data from
qPCR consequent to a combination of sample dilution requirements and low target abundance, should also be tested in
dPCR [59].
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Outstanding Questions
Although efforts have been made to
assess the quality of published qPCR
data in the literature, will there ulti-
mately be agreed metrics supported
by the scientific community for deter-
mining the quality of articles employing
this technology?

Can journals establish a standardized
set of accepted global guidelines for
submission of qPCR data?

Will artificial intelligence software
evolve for adaptation by journals to
enable a rigorous and automated
pre-assessment of the data quality
(based on accepted guidelines) from
submitted manuscripts prior to peer
review?

Will literature search engines incorpo-
rate artificial intelligence to permit the
selection and perhaps the ranking of
articles for data quality?

All of the above will likely require the
submission of the raw data with manu-
scripts to journals. Therefore, will jour-
nal databases and archives permit the
submission, storage, and public query
of raw data to mine the quality with
appropriate security to protect the
results?
Concluding Remarks
qPCR is an excellent tool for nucleic acid detection and quantification with precision down to
about twofold differences between biological groups and lower limit of quantification to
approximately 100 copies (�30 Cqs) for gene expression analysis and absolute quantitation
(Figures 2D and 3B) [36,37]. However, given the effect of sample contaminants on both the
polymerase efficiency and primer annealing, a rigorous, stepwise procedure must be followed
to plan the experiment, verify the samples, and validate the primers (Table 1). The conse-
quences of not pursuing this workflow are either the generation of reproducible but artefactual
data that are unrepresentative of the samples and experimental conditions, or highly variable,
nonstatistically significant results. This underlines several outstanding questions around how
best practices for qPCR experiments can be applied, implemented, and enforced globally to
ensure the integrity and reproducibility of published data and accelerate advances in the
associated fields (see Outstanding Questions).

For those projects where qPCR is deemed inadequate to achieve high-quality data, dPCR could
offer a good alternative to minimize time to publication (Figure 6). Since dPCR is much less
dependent on reaction efficiency, multiplexed detection and quantification of a larger number of
targets per sample is straightforward [54]. Thus, the next generation of dPCR technologies will
likely include more excitation wavelengths to increase the number of detectable targets in a single
sample. For laboratories who wish to quantify tens to hundreds of targets, next generation
sequencing (NGS) technologies may become the methodology of choice. However, the current
NGS methodology to achieve high sensitivity and precision requires a large amount of sample
(about 250 ng) and several orders of magnitude more cost [60].
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